Revista Mexicana de Ingeniería Química, Vol. 22, No. 2 (2023), IA2335


Importance of chemical pretreatment for base metals remotion and its effect on the selective extraction of gold from Printed Circuits Boards (PCBs)

B. Segura-Bailón, G. Lapidus-Lavine

https://doi.org/10.24275/rmiq/IA2335


Abstract

 

Printed Circuit Boards (PCBs) are constituted of multiple materials, which contributes to the complexity of the metal extraction process. In this work, a methodology for removing base metals and selectively extracting gold from a PCB sample was proposed; the sample tested contained ~200 g Au per ton. Two pretreatment stages were introduced (Na3C6H5O7-(NH4)3PO4-H2O2 and H2SO4-H2O2 systems), removing >90% of Cu, Ni, Zn, Fe, and Al. Subsequently, in the precious metal leaching stage, the thiourea-hydrogen peroxide-oxalic acid system (CS(NH2)2-H2O2-C2H2O4), was employed. To achieve elevated gold extraction, the oxalate ion (C2O4-2, Ox) was used as a masking agent, forming stable species with remaining base metals in the leach liquors. Furthermore, this also contributed to H2O2 and CS(NH2)2 stability, permitting a gold dissolution of 92%.

Keywords: Selective leaching of gold, Chemical pretreatment, Base metal removal.

 

References

  • Alzate, A., López, E., Serna, C., Holuszko, M.E. and González, O. (2017). A systematic experimental study on gold recovery from electronic waste using selective ammonium persulfate oxidation. Vancouver B. C: 56th Conference of Metallurgist 2017. https://doi.org/10.14288/1.0347214.
  • Anzures, N.J., Lopez-Sesenes, R., Larios-Gálvez, A.K., Vazquez-Velez, E., Uruchurtu-Chavarin, J. and Gonzalez-Rodríguez, J.G. (2022). Corrosion inhibition of aluminum 2024-T3 in 3.5% NaCl by using litchi chinensis extract.Revista Mexicana de Ingeniería Química 21, Mat2504. https://doi.org/10.24275/rmiq/Mat2504.

 

  • Calla, D., Nava, F. and Fuentes, J.C. (2016). Acid decomposition and thiourea leaching of silver from hazardous jarosite residues: effect of some cations on the stability of the thiourea system. Journal Hazardous Materials 317, 440–448. https://doi.org/10.1016/j. jhazmat.2016.05.085.
  • Calla, D. and Nava, F. (2020). Thiourea determination for the precious metals leaching process by iodate titration. Revista Mexicana de Ingeniería Química 19, 275–284. https://doi.org/10.242475/rmiq/IA539.

 

  • Doona, C. and Stanbury, D.M. (1996). Equilibrium and redox kinetics of copper (II)-thiourea complexes. Inorganic Chemistry 35, 3210-3216.
  • Free, M. (2013). Hydrometallurgy: Fundamentals and Applications. Editorial Wiley, United States of America.

 

  • Jadhao, P., Chauhan, G., Pant, K.K. and Nigam, K.D.P. (2016). Greener approach for the extraction of copper metal from electronic waste. Waste Management 57, 102-112. http://doi.org/10.1016/j.wasman.2015.11.023
  • Jeon, S., Ito, M., Tabelin, C.B., Pongsumrankul, S.T., Kitajima, N., Saito, A., Park, I. and Hiroyoshi, N. (2019). A physical separation scheme to improve ammonium thiosulfate leaching of gold by separation of base metals in crushed mobile phones. Mineral Engineering 138, 168-177. http://doi.org/10.1016/j.mineng.201904.025.  

 

  • Jung, M., Yoo, K. and Alorro, R.D. (2017). Dismantling of electric and electronic components from waste printed circuit boards by hydrochloric acid leaching with stannic ions. Materials Transitions 58, 1076–1080. https://doi.org/10.2320/matertrans.M2017096.
  • Kenna, C. (1991). Extraction and recovery of gold. In: US Patent, 5,260,040.

 

  • Li, H., Eksteen, J., and Oraby, E. (2018). Hydrometallurgical recovery of metals from printed circuit boards (WPCBs): Current status and perspectives-A review. Resources, Conservation and Recycling 139, 122-139. https://doi.org/10.1016/j.resconrec.2018.08.007.

 

  • Lothenbach, B., Ochs, M. and Hans, W. (1999). Thermodynamic Data for the Speciation and Solubility of Pd, Pb, Sn, Sb, Nb, and Bi in Aqueous Solution. Japan Nuclear Cycle Development Institute, Maramatsu, Naka-gun, Ibaraki, 319-1194. Report # JNC-TN– 8400-99-011.
  • Moyo, T., Jiménez, F., Prestele, M., Kondo, T. and Petersen, J. (2022). Evaluating pre-treatment methods to maximise copper recovery from printed circuit boards. Journal of Metallurgy and Materials Science 64, 1-2.

 

  • NIST: National Institute of Standards and Technology (2004). Database 46.8, Critically Selected Stability Constants of Metal Complexes. Version 8.0.
  • Puigdomenech, I. (2004). Equilibrium Diagrams Using Sophisticated Algorithms (MEDUSA). Inorganic Chemistry. Royal Institute of Technology. https://sites.google. com/site/chemdiagr/.

 

  • Rao, M.D., Singh, K.K., Morrison, C.A and Love, J.B. (2020). Challenges and opportunities in the recovery of gold from electronic waste. Royal Society of Chemistry Advances 10, 4300. https://doi.org/10.1039/c9ra07607g.
  • Ruiz-Vela, J.I., Rodríguez-Vázquez E.E., Gudiño-Pérez, Y., Sánchez-Ramírez, R. and Montes-Rodríguez, J.J. (2023). Effect of complexing/buffering agent on the characteristics of a high phosphorous electroless nickel coating. Revista Mexicana de Ingeniería Química 22(2), Proc2331. https://doi.org/10.24275/rmiq/Proc2331.  

 

  • Segura, B. (2022). Lixiviación y recuperación de cobre y oro de basura electrónica mediante la utilización de agentes enmascarantes. Tesis de Doctorado en Ingeniería Química, Universidad Autónoma Metropolitana Unidad Iztapalapa, México.
  • Segura, B. and Lapidus, G. (2023). Selective leaching of base/precious metals from E-waste of cellphone printed circuit boards (EWPCB): Advantages and challenges in a case study. Hydrometallurgy 217, 106040.https://doi.org/10.1016/j.hydromet.2023.106040.

 

  • Segura, B. and Lapidus, G. (2021). Selective recovery of copper contained in waste PCBs from cellphones with impurity inhibition in the citrate-phosphate system.  Hydrometallurgy 203, 105699. https://doi.org/10.1016/j.hydromet.2021.105699
  • Smith, R. M. and Martell, A. E. (1982). Critical Stability Constants, vol 5: Organic and Inorganic Complex, Plenum Press, New York.

 

  • Valix, M., Loo, Y.S., Bucknell, J., Cheung, A.W.H. and Hong, Y. (2017). Effect of FR-4 decomposition in the hydrometallurgical recovery of copper from electronic waste. Hydrometallurgy 173, 199–209. https://doi.org/10.1016/j.hydromet.2017.08.012.
  • Xu, Y., Li, J. and Liu, L. (2016). Current status and future perspective of recycling copper by hydrometallurgy from waste printed circuit boards. Procedia Environmental Sciences 31, 162-170. https://doi.org/10.1016/j.proenv.2016.02.022.