Revista Mexicana de Ingeniería Química, Vol. 22, No. 2 (2023), Mat2983


Improving lubricity and electrical conductivity of ultra-low sulphur diesel using additives

P.M. Vega-Merino, A.L. Vega-Urrutia, B.A. Hernández, M. Mascotte, M. Cruz, F. Trejo, G. Marroquín, P. Rayo

https://doi.org/10.24275/rmiq/Mat2983


Abstract

 

The ultra-low sulphur diesel (ULSD) is currently used to meet environmental regulations regarding to the sulphur content below 15 wppm throughout the world. However, lubricity and electrical conductivity are commonly out of specifications; therefore, some additives are added to a diesel fuel before merchandising it to upgrade these properties. In this research, the effects of two different additives were studied: 1) commercial additive and 2) fatty acid methyl esters (FAME). Several properties of the diesel fuel such as sulphur content, kinematic viscosity, specific gravity, distillation curve, lubricity and electrical conductivity were determined according to standardized methods. Additives were used in different concentrations: 50, 100, 150, 200, and 250 wppm for the commercial additive and 1, 3, 6, 9, and 12 vol% for the FAME. It was found that all properties of the commercial additive/ULSD and FAME/ULSD blends were attained with both additives. In the case of the commercial additive, the lowest concentration needed was 50 wppm while it was 1 vol% for the FAME. Although the cost of the commercial additive is 5 times higher than that of the FAME, usage of the commercial additive is the most profitable option because of its low concentration in the commercial additive/ULSD blends.

Keywords: Electrical conductivity, lubricity, ultra-low sulphur diesel, commercial additive, biodiesel.

 

References

  • Agarwal, S., Chhibber, V. K., and Bhatnagar, A. K. (2013). Tribological behavior of diesel fuels and the effect of anti-wear additives. Fuel, 106, 21–29. https://doi.org/10.1016/j.fuel.2012.10.060
  • Anastopoulos, G., Lois, E., Karonis, D., Kalligeros, S., and Zannikos, F. (2005). Impact of oxygen and nitrogen compounds on the lubrication properties of low sulfur diesel fuels. Energy, 30(2–4), 415–426. https://doi.org/10.1016/j.energy.2004.04.026
  • Arellano-Treviño, M. A., Alleman, T. L., Brim, R., To, A. T., Zhu, J., McEnally, C. S., Hays, C., Luecke, J., Pfefferle, L. D., Foust, T. D., Ruddy, D. A. (2022). Blended fuel property analysis of butyl-exchanged polyoxymethylene ethers as renewable diesel blendstocks. Fuel, 322, 124220. https://doi.org/10.1016/j.fuel.2022.124220
  • ASTM D86 (2020) Standard Test Method for Distillation of Petroleum Products and Liquid Fuels at Atmospheric Pressure. ASTM International, West Conshohocken, PA.
  • ASTM D93 (2020) Standard Test Methods for Flash Point by Pensky-Martens Closed Cup Tester. ASTM International, West Conshohocken, PA.
  • ASTM D97 (2017) Standard Test Method for Pour Point of Petroleum Products. ASTM International, West Conshohocken, PA.
  • ASTM D975 (2021) Standard Specification for Diesel Fuel. ASTM International, West Conshohocken, PA.
  • ASTM D4308 (2021) Standard Test Method for Electrical Conductivity of Liquid Hydrocarbons by Precision Meter. ASTM International, West Conshohocken, PA.
  • ASTM D7039 (2020) Standard Test Method for Sulfur in Gasoline, Diesel Fuel, Jet Fuel, Kerosine, Biodiesel, Biodiesel Blends, and Gasoline-Ethanol Blends by Monochromatic Wavelength Dispersive X-ray Fluorescence Spectrometry. ASTM International, West Conshohocken, PA.
  • ASTM D7042 (2021) Standard Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer (and the Calculation of Kinematic Viscosity). ASTM International, West Conshohocken, PA.
  • ASTM D7688 (2018) Standard Test Method for Evaluating Lubricity of Diesel Fuels by the High-Frequency Reciprocating Rig (HFRR) by Visual Observation. ASTM International, West Conshohocken, PA.
  • Baloch, H. A., Nizamuddin, S., Siddiqui, M. T. H., Riaz, S., Jatoi, A. S., Dumbre, D. K., Mubarak, N. M., Srinivasan, M. P., and Griffin, G. J. (2018). Recent advances in production and upgrading of bio-oil from biomass: A critical overview. Journal of Environmental Chemical Engineering, 6(4), 5101–5118. https://doi.org/10.1016/j.jece.2018.07.050
  • Chen, L.-Y., Chen, Y.-H., Hung, Y.-S., Chiang, T.-H., and Tsai, C.-H. (2013). Fuel properties and combustion characteristics of jatropha oil biodiesel–diesel blends. Journal of the Taiwan Institute of Chemical Engineers, 44(2), 214–220. https://doi.org/10.1016/j.jtice.2012.09.011
  • Dunn, R. O. (2011). Fuel Properties of Biodiesel/Ultra‐Low Sulfur Diesel (ULSD) Blends. Journal of the American Oil Chemists’ Society, 88(12), 1977–1987. https://doi.org/10.1007/s11746-011-1871-3
  • EN 590 (2013) Automotive fuels—Diesel—Requirements and test methods. European Committee for Standardization.
  • Erhan, S. Z., Sharma, B. K., and Perez, J. M. (2006). Oxidation and low temperature stability of vegetable oil-based lubricants. Industrial Crops and Products, 24(3), 292–299. https://doi.org/10.1016/j.indcrop.2006.06.008
  • Fontaras, G., Karavalakis, G., Kousoulidou, M., Tzamkiozis, T., Ntziachristos, L., Bakeas, E., Stournas, S., Samaras, Z. (2009). Effects of biodiesel on passenger car fuel consumption, regulated and non-regulated pollutant emissions over legislated and real-world driving cycles. Fuel, 88, 1608–1617. https://doi.org/10.1016/j.fuel.2009.02.011
  • Hazrat, M. A., Rasul, M. G., and Khan, M. M. K. (2015). Lubricity Improvement of the Ultra-low Sulfur Diesel Fuel with the Biodiesel. Energy Procedia, 75, 111–117. https://doi.org/10.1016/j.egypro.2015.07.619
  • Hu, J., Du, Z., Li, C., and Min, E. (2005). Study on the lubrication properties of biodiesel as fuel lubricity enhancers. Fuel, S0016236105000700. https://doi.org/10.1016/j.fuel.2005.02.009
  • Huang, J., Xiao, H., Yang, X., Guo, F., and Hu, X. (2020). Effects of methanol blending on combustion characteristics and various emissions of a diesel engine fueled with soybean biodiesel. Fuel, 282, 118734. https://doi.org/10.1016/j.fuel.2020.118734
  • Knothe, G., and Steidley, K. R. (2005). Lubricity of Components of Biodiesel and Petrodiesel. The Origin of Biodiesel Lubricity. Energy and Fuels, 19(3), 1192–1200. https://doi.org/10.1021/ef049684c
  • Landwehr, K. R., Hillas, J., Mead-Hunter, R., Brooks, P., King, A., O’Leary, R. A., Kicic, A., Mullins, B. J., Larcombe, A. N. (2021). Fuel feedstock determines biodiesel exhaust toxicity in a human airway epithelial cell exposure model. Journal of Hazardous Materials, 420, 126637. https://doi.org/10.1016/j.jhazmat.2021.126637
  • Landwehr, K. R., Hillas, M., Mead-Hunter, R., King, A., O’Leary, R. A., Kicic, A., Mullins, B. J., Larcombe, A. N. (2022). Toxicity of different biodiesel exhausts in primary human airway epithelial cell grown at air-liquid interface. Science of the Total Environment, 832(1), 155016. https://doi.org/10.1016/j.scitotenv.2022.155016
  • Leal, E., Torres-Mancera, P., Ancheyta, J. (2022). Catalyst stacking technology as a viable solution to ultralow sulfur diesel production. Energy and Fuels, 36(6), 3201-3218. https://doi.org/10.1021/acs.energyfuels.1c04038
  • Liu, Z., Li, J., Knothe, G., Sharma, B. K., & Jiang, J. (2019). Improvement of Diesel Lubricity by Chemically Modified Tung-Oil-Based Fatty Acid Esters as Additives. Energy and Fuels, 33(6), 5110–5115. https://doi.org/10.1021/acs.energyfuels.9b00854
  • Marroquı́n-Sánchez, G., and Ancheyta-Juárez, J. (2001). Catalytic hydrotreating of middle distillates blends in a fixed-bed pilot reactor. Applied Catalysis A: General, 207(1–2), 407–420. https://doi.org/10.1016/S0926-860X(00)00683-9
  • Molina, G. J., Morrison, J., Carapia, C., and Valentin, S. (2019). STLE Annual Meeting and Conference 2019. A Study on Viscosity and Lubricity Effects of N-Butanol and Its Mixtur. https://digitalcommons.georgiasouthern.edu/mech-eng-facpubs/210/
  • Munguía-Guillén, J. L., Vernon-Carter, E. J., de los Reyes-Heredia, J. A., Viveros-García, T. (2016). Effect of surfactant in the synthesis of CoMo/Al2O3 catalysts obtained by reverse microemulsion for dibenzothiophene hydrodesulfurization. Revista Mexicana de Ingeniería Química, 15(3), 893−902. http://rmiq.org/ojs311/index.php/rmiq/article/view/1075
  • Nicolau, A., Lutckmeier, C. V., Samios, D., Gutterres, M., and Piatnick, C. M. S. (2014). The relation between lubricity and electrical properties of low sulfur diesel and diesel/biodiesel blends. Fuel, 117, 26–32. https://doi.org/10.1016/j.fuel.2013.09.026
  • NOM-016-CRE-2016 (2016). Especificaciones de calidad de los petrolíferos. Diario Oficial de la Federación, México
  • Shafiq, I., Shafique, S., Akhter, P., Yang, W., Hussain, M. (2022). Recent developments in alumina supported hydrodesulfurization catalysts for the production of sulfur-free refinery products: a technical review. Catalysis Reviews, 64(1), 1-86. https://doi.org/10.1080/01614940.2020.1780824
  • Shah, S. N., Iha, O. K., Alves, F. C. S. C., Sharma, B. K., Erhan, S. Z., and Suarez, P. A. Z. (2013). Potential Application of Turnip Oil (Raphanus sativus L.) for Biodiesel Production: Physical–Chemical Properties of Neat Oil, Biofuels and their Blends with Ultra-Low Sulphur Diesel (ULSD). BioEnergy Research, 6(2), 841–850. https://doi.org/10.1007/s12155-013-9310-y
  • Shahabuddin, M., Masjuki, H. H., Kalam, M. A., Bhuiya, M. M. K., and Mehat, H. (2013). Comparative tribological investigation of bio-lubricant formulated from a non-edible oil source (Jatropha oil). Industrial Crops and Products, 47, 323–330. https://doi.org/10.1016/j.indcrop.2013.03.026
  • Shaigan, N., Neill, W. S., Littlejohns, J., Song, D., and Lafrance, S. (2020). Adsorption of lubricity improver additives on sliding surfaces. Tribology International, 141, 105920. https://doi.org/10.1016/j.triboint.2019.105920
  • Stanislaus, A., Marafi, A., Rana, M. S. (2010). Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catalysis Today, 153(1-2), 1-68. https://doi.org/10.1016/j.cattod.2010.05.011
  • Sulek, M. W., Kulczycki, A., and Malysa, A. (2010). Assessment of lubricity of compositions of fuel oil with biocomponents derived from rape-seed. Wear, 268(1–2), 104–108. https://doi.org/10.1016/j.wear.2009.07.004
  • Tat, M. E., Çelik, O. N., Er, U., Gasan, H., and Ulutan, M. (2022). Lubricity assessment of ultra-low sulfur diesel fuel (ULSD), biodiesel, and their blends, in conjunction with pure hydrocarbons and biodiesel based compounds. International Journal of Engine Research, 23(2), 214–231. https://doi.org/10.1177/1468087420984072
  • Tumanyan, B. P., Shcherbakov, P. Yu., Sharin, E. A., Matin, M. E., and Matveeva, O. A. (2020). Effectiveness of Vegetable-Oil Fatty Acids as Antiwear Additives for Diesel Oils. Chemistry and Technology of Fuels and Oils, 56(4), 517–529. https://doi.org/10.1007/s10553-020-01164-0
  • Yasin, M. H. M., Mamat, R., Yusop, A. F., Aziz, A., and Najafi, G. (2015). Comparative Study on Biodiesel-methanol-diesel Low Proportion Blends Operating with a Diesel Engine. Energy Procedia, 75, 10–16. https://doi.org/10.1016/j.egypro.2015.07.128
  • Yocupicio, R. I., Díaz de León, J. N., Zepeda, T. A., Fuentes, S. (2017). Study of CoMo catalysts supported on hierarchical mesoporous zeolites for hydrodesulfurization of dibenzothiophene. Revista Mexicana de Ingeniería Química, 16(2), 503−520. http://www.rmiq.org/ojs311/index.php/rmiq/article/view/832