Revista Mexicana de Ingeniería Química, Vol. 22, No. 2 (2023), Sim2399


Modeling NPK nutrients release via nanoparticle/hydrogel system

D.G. Martínez-Hilario, L.A. Carrasco-Venegas, J.V. González-Fernández, J.L. Soto-Gonzales, M.V. Carranza-Oropeza

https://doi.org/10.24275/rmiq/Sim2399


Abstract

 

In this work, we present a detailed mathematical modeling of the controlled release of nutrients encapsulated in a nanoparticle/hydrogel system. The main objective was to investigate how hydrogels can be used to sustainably release water and nutrients, keeping the soil moist and improving nutrient availability for plants. Experimental reference data were used, which underwent rigorous numerical and statistical treatment. The mass transfer equation in spherical coordinates was employed to obtain concentration profiles and released fraction of each nutrient. Additionally, the effective diffusion coefficients of the nutrients were determined through an optimization process controlled by the mean squared error (MSE) statistic. The results revealed that the nanoparticle/hydrogel system demonstrated efficient controlled release of the studied nutrients. The obtained effective diffusion coefficients were 1.3 x 10-11 m2/s for nitrogen in the form of ammonium (MSE=0.0125), 7.2 x 10-10 m2/s for potassium ion (MSE=0.0697), and 5.8 x 10-12 m2/s for phosphorus in the form of hydrophosphate (MSE=0.2023), consistent with typical values observed in similar mass transfer processes. These findings have significant implications for sustainable agriculture as the use of nanoparticle/hydrogel systems can reduce nutrient loss, promote microbial life in the rhizosphere, and enhance nutrient uptake by plants.

Keywords: nanoparticle, hydrogel, modeling, release, NPK nutrients.

 

References

  • Albuquerque, A. C., Rodrigues, J. S., de Freitas, A. S., Machado, G. T., & Botaro, V. R. (2022). Renewable Source Hydrogel as a Substrate of Controlled Release of NPK Fertilizers for Sustainable Management of Eucalyptus urograndis: Field Study. ACS Agricultural Science & Technology2(6), 1251-1260. https://doi.org/10.1021/acsagscitech.2c00215
  • Alharbi, K., Ghoneim, A., Ebid, A., El-Hamshary, H., & El-Newehy, M. H. (2018). Controlled release of phosphorous fertilizer bound to carboxymethyl starch-g-polyacrylamide and maintaining a hydration level for the plant. International Journal of Biological Macromolecules, 116, 224–231. https://doi.org/10.1016/J.IJBIOMAC.2018.04.182
  • Bandeira, M., Giovanela, M., Roesch-Ely, M., Devine, D. M., & da Silva Crespo, J. (2020). Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. In Sustainable Chemistry and Pharmacy (Vol. 15, p. 100223). Elsevier B.V. https://doi.org/10.1016/j.scp.2020.100223
  • Basu, S. K., Kumar, N., & Srivastava, J. P. (2010). Modeling NPK release from spherically coated fertilizer granules. Simulation Modelling Practice and Theory, 18(6), 820–835. https://doi.org/10.1016/J.SIMPAT.2010.01.018
  • Bauli, C. R., Lima, G. F., de Souza, A. G., Ferreira, R. R., & Rosa, D. S. (2021). Eco-friendly carboxymethyl cellulose hydrogels filled with nanocellulose or nanoclays for agriculture applications as soil conditioning and nutrient carrier and their impact on cucumber growing. Colloids and Surfaces A: Physicochemical and Engineering Aspects623, 126771. https://doi.org/10.1016/j.colsurfa.2021.126771
  • Flores-Hernández, E. A., Lira-Saldívar, R. H., Acosta-Ortiz, R., Méndez-Arguello, B., García-López, J. I., Díaz-Barriga-Castro, E., González-Torres, A., & García-Carrillo, M. (2020). Synthesis and characterization of calcium phosphate nanoparticles and effect of the agitation type on particles morphology. Revista Mexicana de Ingeniería Química, 19(1), 285–298. https://doi.org/10.24275/rmiq/Mat523
  • González-Fernández, J. V., Pinzón-Moreno, D. D., Neciosup-Puican, A. A., & Carranza-Oropeza, M. V. (2022). Green Method, Optical and Structural Characterization of ZnO Nanoparticles Synthesized Using Leaves Extract of M. oleifera. Journal of Renewable Materials, 10(3), 833–847. https://doi.org/10.32604/jrm.2021.017377
  • Huang, Q., Fan, X., Tang, S., Zhang, M., Huang, X., Yi, Q., Pang, Y., & Huang, J. (2019). Seasonal differences in N release dynamic of controlled-released urea in paddy field and its impact on the growth of rice under double rice cropping system. Soil and Tillage Research, 195, 104371. https://doi.org/10.1016/J.STILL.2019.104371
  • Kottegoda, N., Munaweera, I., Madusanka, N., & Karunaratne, V. (2011). A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Current Science, 101(1), 73–78.
  • Liu, R., & Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of The Total Environment, 514, 131–139. https://doi.org/10.1016/J.SCITOTENV.2015.01.104
  • Makarov, V. v., Love, A. J., Sinitsyna, O. v., Makarova, S. S., Yaminsky, I. v., Taliansky, M. E., & Kalinina, N. O. (2014). “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae, 6(20), 35–44. https://doi.org/10.32607/20758251-2014-6-1-35-44
  • Melgarejo-Torres, R., Rosales-Mercado, D., Polo-Labarrioso, M. A., Fernández-Anaya, G., Morales-Ibarría, M., Pérez-Vega, S. B., Arce-Vázquez, M. B., & Palmerín-Carreño, D. M. (2022). Mathematical model to estimate volumetric oxygen transfer coefficient in bioreactors using conformable calculus. Revista Mexicana de Ingeniería Química, 21(2), 1–29. https://doi.org/10.24275/rmiq/Bio2701
  • Rakhimol, K. R., Sabu, T., Nandakumar, K., & Jayachandran, K. (2021). Nanotechnology in controlled-release fertilizers. Controlled Release Fertilizers for Sustainable Agriculture, 169–181. https://doi.org/10.1016/B978-0-12-819555-0.00010-8
  • Suratman, A., Purwaningsih, D. R., Kunarti, E. S., & Kuncaka, A. (2020). Controlled Release Fertilizer Encapsulated by Glutaraldehyde-Crosslinked Chitosan Using Freeze-Drying Method. Indonesian Journal of Chemistry20(6), 1414-1421. https://doi.org/10.22146/ijc.55133
  • Vejan, P., Khadiran, T., Abdullah, R., & Ahmad, N. (2021). Controlled release fertilizer: A review on developments, applications and potential in agriculture. Journal of Controlled Release, 339, 321–334. https://doi.org/10.1016/J.JCONREL.2021.10.003
  • Zhang, Z., He, F., Zhang, Y., Yu, R., Li, Y., Zheng, Z., & Gao, Z. (2018). Experiments and modelling of potassium release behavior from tablet biomass ash for better recycling of ash as eco-friendly fertilizer. Journal of Cleaner Production, 170, 379–387. https://doi.org/10.1016/J.JCLEPRO.2017.09.150
  • Zhao, L., Lu, L., Wang, A., Zhang, H., Huang, M., Wu, H., Xing, B., Wang, Z., & Ji, R. (2020). Nano-Biotechnology in Agriculture: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance. Journal of Agricultural and Food Chemistry, 68(7), 1935–1947. https://doi.org/https://doi.org/10.1021/acs.jafc.9b06615