Revista Mexicana de Ingeniería Química, Vol. 22, No. 3 (2023), Alim23103


Drying kinetics and mathematical modelling of dried macaroni supplemented with Gac aril

N.M. Thuy, T.N. Giau, N.V. Tai, V.Q. Minh

https://doi.org/10.24275/rmiq/Alim23103


 

Abstract

Macaroni is dried after being boiled to maintain their quality and extend their shelf life. Evaluation of moisture and nutrient changes aims to provide an overview of the phenomena occurring during the drying process. Thin layer drying kinetics of macaroni supplemented with Gac aril in hot air drying was investigated for temperatures range of 60 to 90oC with six theoretical models were evaluated. It was observed that the Logarithmic equation gave the best prediction to the drying kinetics evidenced by high coefficient of determination (R2 ranging from 0.98-0.99). The lowest RMSE (0.0103 to 0.0426) and χ2 values (0.0002 to 0.0024) were obtained from the Logarithmic model within the defined temperature range. Diffusivity coefficients of moisture transfer were found ranging from 1.64x10-12 to 2.31x10-12 m2sec-1 with activation energy was determined at 11.81 kJ.mol-1. Drying at 80oC for 9 hours was selected for this product, the degradation kinetics of β-carotene and lycopene in macaroni followed a first-order kinetic model with half-life values were determined.

Keywords: ANOVA, drying temperature, prediction, ultrasound, whipping.

 


References

  • Baysal, T. A. N. E. R., Ersus, S. E. D. A., & Starmans, D. A. J. (2000). Supercritical CO2 extraction of β-carotene and lycopene from tomato paste waste. Journal of Agricultural and Food Chemistry, 48(11), 5507-5511. https://doi.org/10.1021/jf000311t
  • Bruno, A., Durante, M., Marrese, P. P., Migoni, D., Laus, M. N., Pace, E., & Lenucci, M. S. (2018). Shades of red: Comparative study on supercritical CO2 extraction of lycopene-rich oleoresins from gac, tomato and watermelon fruits and effect of the α-cyclodextrin clathrated extracts on cultured lung adenocarcinoma cells’ viability. Journal of Food Composition and Analysis65, 23-32.
  • Ceccanti, C., Finimundy, T. C., Melgar, B., Pereira, C., Ferreira, I. C., & Barros, L. (2022). Sequential steps of the incorporation of bioactive plant extracts from wild Italian Plantago coronopus L. and Cichorium intybus L. leaves in fresh egg pasta. Food Chemistry384, 132462.
  • Crank, J. (1979). The mathematics of diffusion. Oxford university press.
  • Doymaz, İ. (2010). Evaluation of mathematical models for prediction of thin-layer drying of banana slices. International Journal of Food Properties, 13(3), 486-497. https://doi.org/10.1080/10942910802650424
  • Doymaz, İ. (2017). Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices. Heat and Mass Transfer, 53(1), 25-35. https://doi.org/10.1007/s00231-016-1791-8
  • Doymaz, İ., & Kocayigit, F. (2012). Effect of pre-treatments on drying, rehydration, and color characteristics of red pepper (‘Charliston’variety). Food Science and Biotechnology, 21(4), 1013-1022. https://doi.org/10.1007/s10068-012-0132-z
  • Espinosa-Solares, T., & Domínguez-Puerto, R. (2023). Influence of power density and geometry of young cactus cladodes (Opuntia ficus-indica (L.) Mill.) on intermittent microwave drying kinetics. Revista Mexicana de Ingeniería Química22(1), Alim2965-Alim2965.
  • Goksu, E. I., Sumnu, G., & Esin, A. (2005). Effect of microwave on fluidized bed drying of macaroni beads. Journal of Food Engineering, 66(4), 463-468. https://doi.org/10.1016/j.jfoodeng.2004.04.017
  • Ishida, B. K., Turner, C., Chapman, M. H., & McKeon, T. A. (2004). Fatty acid and carotenoid composition of gac (Momordica cochinchinensis Spreng) fruit. Journal of Agricultural andFood Chemistry, 52(2), 274-279. https://doi.org/10.1021/jf030616i
  • Kittibunchakul, S., Hudthagosol, C., Sanporkha, P., Sapwarobol, S., Suttisansanee, U., & Sahasakul, Y. (2022). Effects of Maturity and Thermal Treatment on Phenolic Profiles and In Vitro Health-Related Properties of Sacha Inchi Leaves. Plants11(11), 1515.
  • Kumar, D., Ladaniya, M. S., Gurjar, M., & Kumar, S. (2022). Impact of drying methods on natural antioxidants, phenols and flavanones of immature dropped Citrus sinensis L. Osbeck fruits. Scientific Reports12(1), 6684.
  • Lin, Q., Shen, H., Ma, S., Zhang, Q., Yu, X., & Jiang, H. (2023). Morphological distribution and structure transition of gluten induced by various drying technologies and its effects on Chinese dried noodle quality characteristics. Food and Bioprocess Technology16(6), 1374-1387.
  • Loan, L. T. K., Thuy, N. M., & Tai, N. V. (2023). Mathematical and artificial neural network modeling of hot air drying kinetics of instant “Cẩm” brown rice. Food Science and Technology43, e27623. https://doi.org/10.5327/fst.27623
  • Luna-Flores, M., Peña-Juarez, M. G., Bello-Ramírez, A. M., Telis-Romero, J., & Luna-Solano, G. (2023). Assessment of moisture adsorption and desorption isotherms, hysteresis phenomenon and thermodynamic analysis of habanero chili (Capsicum chinense) powder. Revista Mexicana de Ingeniería Química22(1), Alim3044-Alim3044.
  • Mohammadi, X., Deng, Y., Matinfar, G., Singh, A., Mandal, R., & Pratap-Singh, A. (2020). Impact of three different dehydration methods on nutritional values and sensory quality of dried broccoli, oranges, and carrots. Foods9(10), 1464.
  • Sanjuán, N., Lozano, M., García‐Pascual, P., & Mulet, A. (2003). Dehydration kinetics of red pepper (Capsicum annuum L var Jaranda). Journal of the Science of Food and Agriculture, 83(7), 697-701. https://doi.org/10.1002/jsfa.1334
  • Tai, N. V., Linh, M. N., & Thuy, N. M. (2021). Modeling of thin layer drying characteristics of “Xiem” banana peel cultivated at U Minh district, Ca Mau province, Vietnam. Food Research5(5), 244-249.
  • Thavamany, P. J., Chew, H. L., Sreeramanan, S., Chew, B. L., & Ong, M. T. (2020). 'Momordica cochinchinensis' Spreng (Gac fruit): An abundant source of nutrient, phytochemicals and its pharmacological activities. Australian Journal of Crop Science, 14(12), 1844-1854. https://doi.org/10.21475/ajcs.20.14.12.p2515
  • Thorat I. D., Mohapatra D., Sutar R. F., Kapdi S. S. & Jagtap D. D. (2012). Mathematical modeling and experimental study on thin-layer vacuum drying of ginger (Zingiber officinale R.) slices. Food and Bioprocess Technology, 5(4), 1379-1383. https://doi.org/10.1007/s11947-010-0429-y
  • Thuy N. M., Tuyen N. T. M. (2013). Development of new food products from “Gac” (Momordica cochinchinensis) fruit. Mekongfood 2 Conference, Can Tho University, November 9-12, 2011, pp. 407-415.
  • Thuy, N. M., Chi, N. T. D., Huyen, T. H B. and Tai, N. V. (2020). Orange-fleshed sweet potato grown in Viet Nam as a potential source for making noodles. Food Research 4(3): 712-721. https://doi.org/10.26656/fr.2017.4(3).390
  • Thuy, N. M., Han, L. N., & Van Tai, N. (2022). Thermal stability of anthocyanin in mixed raspberry-pomegranate-banana nectar in the presence of ascorbic acid and citric acid. Journal of Applied Biology and Biotechnology10(1), 189-195.
  • Thuy, N. M., Minh, V. Q., Ha, H. T. N., & Tai, N. V. (2021). Impact of different thin layer drying temperatures on the drying time and quality of butterfly pea flowers. Food Research, 5 (6), 197-203. https://doi.org/10.26656/fr.2017.5(6).328
  • Thuy, N. M., Phung, N. T. T., Giau, T. N., Tien, V. Q., Tai, N. V., & Minh, V. Q. (2023). Gac aril and gum xanthan supplementation in wheat macaroni pasta production. Acta Scientiarum Polonorum Technologia Alimentaria22(1), 71-80.
  • Toğrul, İ. T., & Pehlivan, D. (2004). Modelling of thin layer drying kinetics of some fruits under open-air sun drying process. Journal of Food Engineering, 65(3), 413-425. https://doi.org/10.1016/j.jfoodeng.2004.02.001
  • Too, B. C., Van, N., & Thuy, N. M. (2022). Formulation and quality evaluation of noodles with starchy flours containing high levels of resistant starch. Acta Scientiarum Polonorum Technologia Alimentaria21(2), 145-154.
  • Vega-Gálvez, A., Miranda, M., Díaz, L. P., Lopez, L., Rodriguez, K., & Di Scala, K. (2010). Effective moisture diffusivity determination and mathematical modelling of the drying curves of the olive-waste cake. Bioresource Technology, 101(19), 7265-7270. https://doi.org/10.1016/j.biortech.2010.04.040
  • Villeneuve, S., & Gélinas, P. (2007). Drying kinetics of whole durum wheat pasta according to temperature and relative humidity. LWT-Food Science and Technology, 40(3), 465-471. https://doi.org/10.1016/j.lwt.2006.01.004
  • Zanoni, B., Peri, C., Nani, R., & Lavelli, V. (1998). Oxidative heat damage of tomato halves as affected by drying. Food Research International, 31(5), 395-401. https://doi.org/10.1016/S0963-9969(98)00102-1
  • Zarein, M., Samadi, S. H., & Ghobadian, B. (2015). Investigation of microwave dryer effect on energy efficiency during drying of apple slices. Journal of the Saudi Society of Agricultural Sciences, 14(1), 41-47. https://doi.org/10.1016/j.jssas.2013.06.002
  • Zhou, M., Xiong, Z., Cai, J., & Xiong, H. (2015). Convective air drying characteristics and qualities of non-fried instant noodles. International Journal of Food Engineering, 11(6), 851-860. https://doi.org/10.1515/ijfe-2015-0108