Revista Mexicana de Ingeniería Química, Vol. 22, No. 3 (2023), Poly2329


Structural, thermal, and functional properties of Agave tequilana fructan fractions modified by acylation

D.I. Díaz-Ramos, M. Jiménez-Fernández, O. García-Barradas, M.A. Chacón-López, E. Montalvo-González, U.M. López-García, C.I Beristain-Guevara, R.I. Ortiz-Basurto

https://doi.org/10.24275/rmiq/Poly2329

Supplementary material


 

Abstract

Native Agave Fructans (NAF) are characterized by their high hydrophilicity, which limits their applications in food and other areas. In turn, the high content of OH groups in its structure allows its chemical modification easily. High Performance Agave Fructans fractions (HPAF) and a High Degree of Polymerization Agave Fructans (HDPAF) have been obtained through an ultradiafiltration. Therefore, the objective of the present study was to modify NAF and its fractions HPAF and HDPAF through acylation reaction with lauroyl chloride and to evaluate their physicochemical and functional properties at different pH levels. The characterization of the fructans fractions involved nuclear magnetic resonance (NMR), Fourier transforms infrared spectroscopy (FTIR) differential scanning calorimetry (DSC), and X-ray diffraction (XRD) techniques, which demonstrated the incorporation of the lauroyl functional group (chain of 12 carbon atoms) in the molecules, with degrees of substitution (DS) ranging from 2.03 to 2.36. The fractions showed significant changes in their functional (foaming, swelling, emulsification, and solubility, which depended on pH), physicochemical, and thermal properties. Therefore, this study confirmed that the acylation of NAF, HPAF, and HDPAF modifies their properties and provides an opportunity to diversify and expand their use in different areas.

Keywords: Esterification, functionality, chemical modification, amphiphilic molecules, biopolymer.

 


References

  • Aldrete-Herrera, P.I., López, M.G., Ceja-Medina, L.I., Medina-Torres, L., and Ortiz-Basurto, R.I. (2023). Study of the rheological and physicochemical properties of fructan fractions of Agave tequilana cv. cenizo. Agrociencia 57(4).
    https://doi.org/10.47163/agrociencia.v57i4.2626
  • Anderson, R. (1982). Water absorption and solubility y amilograph characteristics of roll-cooked small grain products. Cereal Chemistry 59, 123–127.
  • Baraka, F., Robles, E., and Labidi, J. (2023). Microwave-assisted esterification of bleached and unbleached cellulose nanofibers. Industrial Crops and Products 191, 115970 https://doi.org/10.1016/j.indcrop.2022.115970
  • Buitrago-Arias, C., Londoño-Moreno, A., Ávila-Reyes, S.V., Arenas-Ocampo, M.L., Alamilla-Beltran, L., Jiménez-Aparicio, A.R., and Camacho-Díaz B.H. (2021). Evaluation of the fermentation of acetylated agave fructans (agavins), with Saccharomyces boulardii as a probiotic. Revista Mexicana de Ingenieria Quimica 20(3). https://doi.org/10.24275/RMIQ/POLY2533
  • Castañeda-Salazar, A., Figueroa-Cárdenas, M.G., López, M.G., and Mendoza, S. (2023). Physicochemical and functional characterization of agave fructans modified by cationization and carboxymethylation. Carbohydrate Polymer Technologies and Applications 5, 100284.https://doi.org/10.1016/j.carpta.2023.100284
  • Ceja-Medina, L.I., Medina-Torres, L., González-Ávila, M., Martínez-Rodríguez, J.C., Andrade-González, I., Calderón-Santoyo, M., and Ortiz-Basurto, R.I. (2021). In vitro synbiotic activity of Lactobacillus plantarum encapsulated with mixtures of Aloe vera mucilage, agave fructans and food additives as wall materials. Revista Mexicana de Ingeniería Química20(2), 711-723. https://doi.org/ 10.24275/rmiq/ Bio2234 
  • Ceja-Medina, L.I., Ortiz-Basurto, R.I., Medina-Torres, L., Calderas, F., Bernad-Bernad, M.J., González-Laredo, R.F, Ragazzo-Sánchez, J.A., Calderón-Santoyo, M., González-Ávila, M., Andrade-González, I., and Manero, O. (2020). Microencapsulation of Lactobacillus plantarum by spray drying with mixtures of Aloe vera mucilage and agave fructans as wall materials. Journal of Food Process Engineering 43, e13436. https://doi.org/10.1111/jfpe.13436
  • Cervantes-Martínez, C.V., Medina-Torres, L., González-Laredo, R.F., Calderas, F., Sánchez-Olivares, G., Herrera-Valencia, E.E., and Rodríguez-Ramírez, J. (2014). Study of spray drying of the Aloe vera mucilage (Aloe vera barbadensis Miller) as a function of its rheological properties. LWT - Food Science and Technology 55, 426–435. https://doi.org/10.1016/j.lwt.2013.09.026
  • Chakravarty, P., and Nagapudi, K. (2021). The importance of water-solid interactions in small molecule drug development: An industry perspective. Trends in Analytical Chemistry 140, 116276. https://doi.org/10.1016/j.trac.2021.116276

Chandrika, K.S.V.P., Singh, A., Sarkar, D.J., Rathore, A., and Kumar, A. (2014). pH-sensitive crosslinked guar gum-based superabsorbent hydrogels: Swelling response in simulated environments and water retention behavior in plant growth media. Journal of Applied Polymer Science 131, 22.  https://doi.org/10.1002/app.41060

  • Chau, C.F., Cheung, P.C.K., and Wong, Y.S. (1997). Functional properties of Protein concentrates from three Chinese indigenous legume seeds. Journal Agricultural Food Chemistry 45, 2500-2503. https://doi.org/10.1021/jf970047c
  • Choi, Y.R., Lee, Y.K., and Chang, Y.H. (2018) Structural and rheological properties of pectic polysaccharide extracted from Ulmus davidiana esterified by succinic acid. International Journal of Biological Macromolecules 120, 245-254. https://doi.org/10.1016/j.ijbiomac.2018.08.094.
  • da silva, L.J.D., Quadro, O. E., Gouveia, C.L.H., Martín, L.H., Medeiros, S.C.D., and Prentice, C. (2021). Extraction, physicochemical characterization, and morphological properties of chitin and chitosan from cuticles of edible insects. Food Chemistry 343, 128550. https://doi.org/10.1016/j.foodchem.2020.128550
  • Desbrieres, J., Peptu, C.A., Savin, C.L., and Popa, M. (2018). Chemically modified polysaccharides with applications in nanomedicine. Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value 351-399. https://doi.org/10.1016/B978-0-444-63774-1.00010-7
  • Díaz-Ramos, D.I., Ortiz-Basurto, R.I., García-Barradas, O., Chacón-López, M.A., Montalvo-González, E., Pascual-Pineda, L.A., Valenzuela-Vázquez, U., and Jiménez-Fernández, M. (2023). Lauroylated, acetylated, and succinylated Agave tequilana fructans fractions: Structural characterization, prebiotic, antibacterial activity and their effect on Lactobacillus paracasei under gastrointestinal conditions. Polymers 15, 3115.  https://doi.org/10.3390/polym15143115
  • Espinoza-Andrews, H., and Urías-Silvas, J.E. (2012). Thermal properties of agave fructans (Agave tequilana Weber var. Azul). Carbohydrate Polymers 87, 2671–2676. https://doi.org/10.1016/j.carbpol.2011.11.053
  • Farzad, S., Mohsen K.Y., Jouyandeh, M., Habibzadeh, S., Muhammad T.M., Henri V., Babak, B., Navid, R., Payam, Z., and Mohammad, R.S. (2021). Crystalline polysaccharides: A review. Carbohydrate Polymers 275. https://doi.org/10.1016/j.carbpol.2021.118624
  • Fernández-Lainez, C., Akkerman, R., Oerlemans, M., Logtenberg, M., Schols, H.A., Silva-Lagos, L., López-Velázquez, G., and de Vos, P. (2021). β (2→6)-Type fructans attenuate proinflammatory responses in a structure dependent fashion via Toll-like receptors. Carbohydrate Polymers 277, 18893. https://doi.org/10.1016/j.carbpol.2021.118893
  • Flores-Andrade, E., Allende-Baltazar, Z., Sandoval-González, P.E., Jiménez-Fernández, M., Beristain, C.I., and Pascual-Pineda, L.A. (2021). Carotenoid nanoemulsions stabilized by natural emulsifiers: Whey protein, gum Arabic, and soy lecithin. Journal of Food Engineering 290, 110208. https://doi.org/10.1016/j.jfoodeng.2020.110208
  • Gahruie, H.H., Eskandari, M.H., Khalesi, M., Van der Meeren, P., and Hosseini, S.M.H. (2020). Rheological and interfacial properties of basil seed gum modified with octenyl succinic anhydride. Food Hydrocolloids 101, 105489. https://doi.org/10.1016/j.foodhyd.2019.105489
  • García-Barradas, O., Esteban-Cortina, A., Mendoza-López, M.R., Ortiz-Basurto, R.I., Díaz-Ramos, D.I., and Jiménez-Fernández, M. (2022). Chemical modification of Opuntia ficus-indica mucilage: characterization, physicochemical, and functional properties.  Polymer Bulletin. https://doi.org/10.1007/s00289-022-04474-x
  • García-Gamboa, R., Gradila-Hernández, M.S, Ortiz-Basurto, R.I., García-Reyes, R.A., and González-Avila, M. (2020). Assessment of intermediate and long chains agave fructan fermentation on the growth of intestinal bacteria cultured in a gastrointestinal tract simulator. Revista Mexicana de Ingeniería Química 19, 827- 838. https://doi.org/10.24275/rmiq/Bio842
  • Han, L., Ratcliffe, I., and Williams P.A. (2017). Synthesis, characterization and physicochemical properties of hydrophobically modified inulin using long-chain fatty acyl chlorides. Carbohydrate Polymers 178, 141–146. https://doi.org/10.1016/j.carbpol.2017.09.008
  • Hantal, G., Sega, M., Horvai, G., and Jedlovszky, P. (2019). Contribution of different molecules and moieties to the surface tension in aqueous surfactant solutions. The Journal of Physical Chemistry C 123, 16660-16670. https://doi.org/10.1021/acs.jpcc.9b02553 
  • Hernández-Pérez, S., Oliart-Ros, R.M., Casas-Godoy, L., Sandoval, G., Guarner-Lans, V., Castrejón-Téllez, V., Quevedo-Corona, L., Peña-Montes, C., and Ramírez-Higuera, A. (2022). Beneficial effects of fructooligosaccharides esterified with lauric acid in a metabolic syndrome model induced by a high-fat and high-carbohydrate diet in wistar rats.  Journal of Medicinal Food 25, 835. https://doi.org/10.1089/jmf.2021.0109
  • Ignot-Gutiérrez, A., Ortiz-Basurto, R.I, García-Barradas, O., Díaz-Ramos, D.I., and Jiménez- Fernández, M. (2020). Physicochemical and functional properties of native and modified agave fructans by acylation. Carbohydrate Polymers 245, 116529. https://doi.org/10.1016/j.carbpol.2020.116529
  • Kontogiorgos, V. (2019). Polysaccharides at fluid interfaces of food systems. Advances in Colloid and Interface Science 270, 28–37. https://doi.org/10.1016/j.cis.2019.05.008
  • Kunisada, H., Yuki, Y., Kondo, S, Miyatake, J., Maeda, C. (1990) Synthesis and side-chain crystallization of new comb-like polymers from 2-Amino-4-(N-alkylanilino)-6-isopropenyl-1,3,5-triazines. Polymer Journal 22, 559–566.  https://doi.org/10.1295/polymj.22.559
  • Leone, R.d.S., Colman, D.T.A., Schnitzler., Ellendersen, L.N., and Masson, M.L. (2014). Evolved gas analysis (coupled TG–DSC–FTIR) applied to the thermal behaviour of inulin. Journal of Analytical and Applied Pyrolysis 108, 323-326. https://doi.org/10.1016/j.jaap.2014.04.009
  • Li, W., Separovic, F., O´Brien-Simpson, N.M., and Wade, J.D. (2021). Chemically modified and conjugated antimicrobial peptides against superbugs. Chemical Society Reviews 50, 4932-4973. https://doi.org/10.1039/D0CS01026J
  • Maedeh, O.A., Mohammad, S.Y., Faramarz, K., Mohammad, M., Mohammad, G., Kennedy J.F., and Seyed, S.H. (2020). Chemical modification of pullulan exopolysaccharide by octenyl succinic anhydride: Optimization, physicochemical, structural and functional properties. International Journal of Biological Macromolecules 164, 3485-3495. https://doi.org/10.1016/j.ijbiomac.2020.08.158
  • Mansel, B.W., Ryan, T.M., Chen, Hsin-Lung., Lundin, L., and Williams M.A.K. (2020). Polysaccharide conformations measured by solution state X-ray scattering. Chemical Physics Letters 739. https://doi.org/10.1016/j.cplett.2019.136951
  • Mathias-Rettig, K., and Ah-Hen, K. (2014). Color in food as a measurable quality criterion. Journal Agro Sur 42, 57-66.
  • Mellado-Mojica E., and López M.G. (2012). Fructan metabolism in A. tequilana Weber blue variety along its developmental cycle in the field. Journal Agricultural and Food Chemistry 60, 11704–11713. https://doi.org/10.1021/jf303332n
  • Miramontes-Corona, C., Escalante, A., Delgado, E., Corona-González, R I., Vázquez-Torres, H., and Toriz, G. (2020). Hydrophobic agave fructans for sustained drug delivery to the human colon. Reactive & Functional Polymers 146, 104396. https://doi.org/10.1016/j.reactfunctpolym.2019.104396
  • Miramontes-Corona, C., Escalante, M.A., Delgado, E., Corona, R.I., Vázquez, H., and Toriz, G. (2019). Characterization of modified agave fructans used as drug carriers to the colon by spectroscopy techniques. Infrared Remote Sensing and Instrumentation XXVI; 111280X. https://doi.org/10.1117/12.2526135
  • Ortiz-Basurto, R.I., Rubio-Ibarra, M.E., Ragazzo-Sánchez, J.A., Beristain, C.I., and Jiménez- Fernández, M. (2017). Microencapsulation of Eugenia uniflora L. juice by spray drying 133 using fructans with different degrees of polymerization. Carbohydrate Polymers 175, 603–609. https://doi.org/10.1016/j.carbpol.2017.08.030
  • Peng, T.X., Liang, D.S., Guo, F., Peng, H., Xu, Y.C., Luo, N.P., Zhang, X.Y., and Zhong, H.J. (2019). Enhanced storage stability of solid lipid nanoparticles by surface modification of comb-shaped amphiphilic inulin derivatives. Colloids and Surfaces B: Biointerfaces 181, 369–378. https://doi.org/10.1016/j.colsurfb.2019.05.061
  • Petkova, N.T., Tumbarski, Y.D., Ivanov, I.I., and Denev, P.P. (2017). Design of inulin acetates with potential antimicrobial activity. Bulgarian Journal of Veterinary Medicine 20, 13–17.
  • Ramaswamy, U., Kabel, M., Schols, H., and Gruppen, H. (2013). Structural features and water holding capacities of pressed potato fibre polysaccharides. Carbohydrate Polymers 93, 589-596. https://doi.org/10.1016/j.carbpol.2012.12.057
  • Rodriguez-Furlán, L.T., Aldrete-Herrera, P., Pérez-Padilla, A., Ortiz-Basurto, R.I. and Campderrós, M.E. (2014). Assessment of agave fructans as lyoprotectants of bovine plasma proteins concentrated by ultrafiltration. Food Research International 56, 146–158. https://doi.org/10.1016/j.foodres.2013.12.014
  • Rodríguez-González, F., Parra-Montes de Oca, M.A., Ávila-Reyes, S.V., Camacho-Díaz, B.H., Alamilla-Beltrán, L., Jiménez-Aparicio, A.R., and Arenas-Ocampo, M.L. (2019). A rheological study of chicory and agave tequilana fructans for use in foods. LWT-Food Science and Technology 115, 108137. https://doi.org/10.1016/j.lwt.2019.05.035
  • Salgado-Delgado, A.M., Lozano-Pineda, E., Salgado-Delgado, R., Hernández-Uribe, J.P., Olarte-Paredes, A., Granados-Baeza, M.J. (2022). Chemical modification of rice (Oryza sativa) and potato (Solanum tuberosum) starches by silanization with trimethoxy(methyl)silane. Revista Mexicana de Ingeniería Química 21(3). https://doi.org/10.24275/rmiq/Alim2802
  • Sánchez, R., Alonso, G., Valencia, C., and Franco, J.M. (2015). Rheological and TGA study of acylated chitosan gel-like dispersions in castor oil: Influence of acyl substituent and acylation protocol. Chemical Engineering Research and Design 100, 170-178. https://doi.org/10.1016/j.cherd.2015.05.022
  • Shi, X.D., Nie, S.P., Yin, J.Y., Que, Z.Q., Zhang, L.J., and Huang, X.J. (2017) Polysaccharide from Leaf Skin of Aloe barbadensis Miller: Part I. Extraction, fractionation, physicochemical properties and structural characterization. Food Hydrocolloids 73, 176–183. https://doi.org/10.1016/j.foodhyd.2017.06.039
  • Starbird, R., Zuñiga, V., Delgado, E., Saake, B., and Toriz, G. (2007). Design of microspheres for drug delivery to the colon from blue agave fructans. Part 1. Esterification of agave fructans. Journal of Biobased Materials and Bioenergy 1, 238-244. https://doi.org/10.1166/jbmb.2007.028
  • Tapia, M.S., Alzamora, S.M., and Chirife, J. (2020). Effects of water activity (aw) on microbial stability as a Hurdle in food preservation. In: Water Activity in foods: Fundamentals and applications, second edition. (G.V. Barbosa-Cánovas, A.J Fontana,  S.J. Schmidt,  and T.P. Labuza, eds.), John Wiley & Sons, Inc. Pp. 323-355 https://doi.org/10.1002/9781118765982.ch14
  • Taresco, V., Suksiriworapong, J.,  Creasey, R., Burley, J.C.,  Mantovani, G.C., Treacher, K., Booth, J., and Garnett, M.C. (2016). Properties of acyl modified poly (glycerol-adipate) comb-like polymers and their self-assembly into nanoparticles. Journal of Polymer Science, Part A: Polymer Chemistry 54,3267–3278. https://doi.org/10.1002/pola.28215
  • Toda, Akihiko. (2020). Small angle X-ray scattering from finite sequence of lamellar stacks of crystalline polymers. Polymers 211. https://doi.org/10.1016/j.polymer.2020.123110
  • Wani, I, Sogi., D, Wani., A., and Gill, B. (2013). Physico-chemical and functional properties of flours from Indian kidney bean (Phaseolus vulgaris L.) cultivars. LWT-Food Science and Technology 53, 278–284. https://doi.org/10.1016/j.lwt.2013.02.006
  • Yin, S.W., Tang, C.H., Wen, Q.B., Yang, X.Q., and Yuan, D.B. (2010). The relationships between physicochemical properties and conformational features of succinylated and
    acetylated kidney bean (Phaseolus vulgaris L.) protein isolates. Food Research International 43, 730–738. https://doi.org/10.1016/j.foodres.2009.11.007
  • Zapata-Luna, R.L., Davidov-Pardo, G., Pacheco, N., Ayora-Talavera, T., Espinosa-Andrews, H., García-Márquez, E., and Cuevas-Bernardino, J.C. (2023). Structural and physicochemical properties of bio-chemical chitosan and its performing in an active film with quercetin and Phaseolus polyanthus starch. Revista Mexicana de Ingeniería Química 22 (2). https://doi.org/10.24275/rmiq/Alim2315
  • Zhang, L., Xiao, Q., Zhang, Y., Weng, H., Wang, S., Chen, F., and Xiao, A. (2023). A comparative study on the gel transition, structural changes, and emulsifying properties of anhydride-esterified agar with varied degrees of substitution and carbon chain lengths. Food Hydrocolloids 141, 108690, https://doi.org/10.1016/j.foodhyd.2023.108690
  • Zhao, C.B., Zhang, H., Xu, X.Y., Cao, Y., Zheng, M.Z., and Liu, J.S. (2017). Effect of acetylation and succinylation on physicochemical properties and structural characteristics of oat protein isolate. Process Biochemistry 57, 117–123. https://doi.org/10.1016/j.procbio.2017.03.022