Revista Mexicana de Ingeniería Química, Vol. 23, No. 1 (2024), Alim24201


Wheat bread supplemented with potato peel flour: color, molecular organization, texture and in vitro starch digestibility

A. Godoy-Ramirez, M. E. Rodriguez-Huezo, V.H. Lara-Corona, E. Jaime Vernon-Carter, J. Alvarez-Ramirez

https://doi.org/10.24275/rmiq/Alim24201


 

Abstract

In this work the physical characteristics and in vitro digestibility of breads made from blends of wheat flour and potato peel flour (PPF), with weight percentage of PPF of 0, 5, 10, 15 and 20 g/100 g were studied. Thermal gravimetric analysis (TGA) showed that the PPF addition accelerated the weight loss with the temperature. Fourier transform infrared (FTIR) analysis revealed PPF induced changes in the bread molecular organization, with an increase of cluster-like water structures, a decrease of the β-sheet protein structures and an increase of amorphous starch arrangements. PPF addition also led to bread with decreased relative volume and increased hardness, which was linked to the disruption of the starch and protein structures. In contrast, starch digestibility showed a marked decrease, of the rapidly digestible starch fraction. A multivariate Principal Component Analysis (PCA) showed that the in vitro starch digestibility is linked to the water and starch structures. Overall, the results showed that the addition of up to 10 g of PPF/100 g wheat flour is a viable option for obtaining a bread with decreased starch digestibility and similar overall quality properties of a full wheat bread control.

Keywords: Bread; FTIR; in vitro digestibility; potato peel flour.

 


References

  • AACC International (2010). Approved Methods of Analysis, 11th Ed., AACC International,
  • St. Paul.
  • Akter, M., Anjum, N., Roy, F., Yasmin, S., Sohany, M., and Mahomud, M. S. (2023). Effect of drying methods on physicochemical, antioxidant and functional properties of potato peel flour and quality evaluation of potato peel composite cake. Journal of Agriculture and Food Research, 11, 100508. doi.org/10.1016/j.jafr.2023.100508
  • Akyol, H., Riciputi, Y., Capanoglu, E., Caboni, M. F., and Verardo; V. (2016). Phenolic compounds in the potato and its byproducts: An overview. International Journal of Molecular Sciences, 17(6), 835. doi.org/10.3390/ijms17060835
  • Ali, S. M., Siddique, Y., Mehnaz, S., and Sadiq, M. A. (2023). Extraction and characterization of starch from low-grade potatoes and formulation of gluten-free cookies containing modified potato starch. Heliyon, 9, e19581.
  • Alvarez-Ramirez, J., Carrera-Tarela, Y., Carrillo-Navas, H., Vernon-Carter, E. J., and Garcia-Diaz, S. (2019). Effect of leavening time on LAOS properties of yeasted wheat dough. Food Hydrocolloids, 90, 421-432. doi.org/10.1016/j.foodhyd.2018.12.055
  • Alvarez-Ramirez, J., Vernon-Carter, E.J., Carrera-Tarela, Y., Garcia, A., and Roldan-Cruz, C. (2020). Effects of candelilla wax/canola oil oleogel on the rheology, texture, thermal properties and in vitro starch digestibility of wheat sponge cake bread. LWT, 130, 109701. doi.org/10.1016/j.lwt.2020.109701
  • Arapoglou, D., Varzakas, T., Vlyssides, A., and Israilides, C. J. W. M. (2010). Ethanol production from potato peel waste (PPW). Waste Management30, 1898-1902. doi.org/10.1016/j.wasman.2010.04.017
  • Awogbemi, O., Kallon, D. V. V., and Owoputi, A. O. (2022). Biofuel generation from potato peel waste: current state and prospects. Recycling7(2), 23. doi.org/10.3390/recycling7020023
  • Azizi, A. F., Sethi, S., Joshi, A., and Arora, B. (2021). Utilisation of potato peel in fabricated potato snack. Potato Research, 1-13. doi.org/10.1007/s11540-021-09492-2
  • Baumgartner, B., Hayden, J., Loizillon, J., Steinbacher, S., Grosso, D., and Lendl, B. (2019).  Pore size-dependent structure of confined water in mesoporous silica films from water adsorption/desorption using ATR–FTIR spectroscopy. Langmuir35, 11986-11994. oi.org/10.1021/acs.langmuir.9b01435
  • Bock, J. E., Connelly, R. K., and Damodaran, S. (2013). Impact of bran addition on water properties and gluten secondary structure in wheat flour doughs studied by attenuated total reflectance Fourier transform infrared spectroscopy. Cereal Chemistry90, 377-386. doi.org/10.1094/CCHEM-01-13-0008-FI
  • Casas-Godoy, L., Barrera-Martínez, I., Borrás-Enríquez, A. J., Gonzalez-Escobar, J. L.,
  • Sánchez-Becerril, M., Moreno-Vilet, L., and García-Barrón, S.E. (2023).
  • Development of a gluten- and lactose-free bakery product with nutritional and
  • functional potential. Revista Mexicana de Ingeniería Química, 22, Alim2318.
  • https://doi.org/10.24275/rmiq/Alim2318
  • Chen, Y., Zhao, L., He, T., Ou, Z., Hu, Z., and Wang, K. (2019). Effects of mango peel powder on starch digestion and quality characteristics of bread. International Journal of Biological Macromolecules140, 647-652. doi.org/10.1016/j.ijbiomac.2019.08.188
  • Durmaz, A., and Yuksel, F. (2021). Deep fried wheat chips added with potato peel flour—Effect on quality parameters. Quality Assurance and Safety of Crops and Foods13(1), 115-124. doi.org/10.15586/qas.v13i1.844
  • Ebrahimian, F., Denayer, J. F., and Karimi, K. (2022). Potato peel waste biorefinery for the sustainable production of biofuels, bioplastics, and biosorbents. Bioresource Technology, 360, 127609. doi.org/10.1016/j.biortech.2022.127609
  • Elkahoui, S., Bartley, G. E., Yokoyama, W. H., and Friedman, M. (2018). Dietary supplementation of potato peel powders prepared from conventional and organic russet and non-organic gold and red potatoes reduces weight gain in mice on a high-fat diet. Journal of Agricultural and Food Chemistry66, 6064-6072. doi.org/10.1021/acs.jafc.8b01987
  • Fessas, D., and Schiraldi, A. (2001). Water properties in wheat flour dough I: classical thermogravimetry approach. Food Chemistry72(2), 237-244. doi.org/10.1016/S0308-8146(00)00220-X
  • Fradinho, P., Oliveira, A., Domínguez, H., Torres, M. D., Sousa, I., and Raymundo, A. J. I. F. S. (2020). Improving the nutritional performance of gluten-free pasta with potato peel autohydrolysis extract. Innovative Food Science and Emerging Technologies63, 102374. doi.org/10.1016/j.ifset.2020.102374
  • Garcıa, D. M., Escobar, J. L., Bada, N., Casquero, J., Hernáez, E., and Katime, I. (2004). Synthesis and characterization of poly (methacrylic acid) hydrogels for metoclopramide delivery. European Polymer Journal, 40, 1637-1643. doi.org/10.1016/j.eurpolymj.2004.03.011
  • Giuberti, G., Rocchetti, G., and Lucini, L. (2020). Interactions between phenolic compounds, amylolytic enzymes and starch: an updated overview. Current Opinion in Food Science, 31, 102-113. doi.org/10.1016/j.cofs.2020.04.003
  • Ghorbani, H., Seyedain-Ardebili, M., and Fadavi, G. (2022). Investigating the effect of potato peel on dough rheology and biscuit properties. Food Engineering Research20(2), 49-62. doi.org/10.22092/fooder.2022.355569.1316
  • González, M., Vernon-Carter, E.J., Alvarez-Ramirez, J., and Carrera-Tarela, Y. (2021). Effects of dry heat treatment temperature on the structure of wheat flour and starch in vitro digestibility of bread. International Journal of Biological Macromolecules, 166, 1439-1447. doi.org/10.1016/j.ijbiomac.2020.11.023
  • Jacinto, G., Stieven, A., Maciel, M. J., and Souza, C. F. V. D. (2020). Effect of potato peel, pumpkin seed, and quinoa flours on sensory and chemical characteristics of gluten-free breads. Brazilian Journal of Food Technology (Campinas), 23, e2019169. doi.org/10.1590/1981-6723.16919
  • Makori, S. I., Mu, T. H., and Sun, H. N. (2022). Profiling of polyphenols, flavonoids and anthocyanins in potato peel and flesh from four potato varieties. Potato Research, 65, 193-208. doi.org/10.1007/s11540-021-09516-x
  • Meral, H., and Karaoğlu, M. M. (2020). The effect of the stale bread flour addition on flour and bread quality. International Journal of Food Engineering16, 20190100. doi.org/10.1515/ijfe-2019-0100
  • Miñarro, B., Albanell, E., Aguilar, N., Guamis, B., and Capellas, M. (2012). Effect of legume flours on baking characteristics of gluten-free bread. Journal of Cereal Science, 56, 476-481. doi.org/10.1016/j.jcs.2012.04.012
  • Mushtaq, Q., Irfan, M., Tabssum, F., and Iqbal Qazi, J. (2017). Potato peels: A potential food waste for amylase production. Journal of Food Process Engineering40(4), e12512. doi.org/10.1111/jfpe.12512
  • Perez-Chabela, M. D. L., Cebollon-Juarez, A., Bosquez-Molina, E., and Totosaus, A. (2022). Mango peel flour and potato peel flour as bioactive ingredients in the formulation of functional yogurt. Food Science and Technology (Campinas)42, e38220. doi.org/10.1590/fst.38220
  • Pu, P., Wei, J., Wang, L., Huan, J., Chen, X., Luo, C., Liu, X., and Zhang, H. (2017). Effects of potato/wheat flours ratio on mixing properties of dough and quality of noodles. Journal of Cereal Science, 76, 236-242. oi.org/10.1016/j.jcs.2017.06.020
  • Reyes, I. Rodríguez-Huezo, M. E., and García-Díaz, S. (2023). Opuntia ficus-indica mucilage reduces wheat starch in vitro digestibility.Revista Mexicana de Ingeniería Química, 22, Alim2316. https://doi.org/10.24275/rmiq/Alim2316
  • Rytel, E., Tajner-Czopek, A., Kita, A., Aniołowska, M., Kucharska, A. Z., Sokół-Łętowska, A., and Hamouz, K. (2014). Content of polyphenols in coloured and yellow fleshed potatoes during dices processing. Food Chemistry161, 224-229. doi.org/10.1016/j.foodchem.2014.04.002
  • Sampaio, S. L., Petropoulos, S. A., Alexopoulos, A., Heleno, S. A., Santos-Buelga, C., Barros, L., and Ferreira, I. C. (2020). Potato peels as sources of functional compounds for the food industry: A review. Trends in Food Science and Technology103, 118-129. doi.org/10.1016/j.tifs.2020.07.015
  • Singh, A., Lahlali, R., Vanga, S. K., Karunakaran, C., Orsat, V., and Raghavan, V. (2016). Effect of high electric field on secondary structure of wheat gluten. International Journal of Food Properties19, 1217-1226. doi.org/10.1080/10942912.2015.1076458
  • Sivam, A. S., Sun-Waterhouse, D., Perera, C. O., and Waterhouse, G. I. N. (2012). Exploring the interactions between blackcurrant polyphenols, pectin and wheat biopolymers in model breads; a FTIR and HPLC investigation. Food Chemistry131, 802-810. doi.org/10.1016/j.foodchem.2011.09.047
  • Soltan, O. I., Gazwi, H. S., Ragab, A. E., Mahmoud, M. E., Fudllalah, F. M., Alqahtani, M. M., Alasmari, A., Ghazzawy, H. S. and Hikal, D. M. (2023). Antihyperlipidemic effect of bread fortified with potato peel powder against Triton X-100-induced hyperlipidemia in male albino rats. Journal of Functional Foods108, 105725. doi.org/10.1016/j.jff.2023.105725
  • Walrafen, G. E., Hokmabadi, M. S., and Yang, W. H. (1986). Raman isosbestic points from liquid water. Journal of Chemical Physics, 85, 6964-6969. doi.org/10.1063/1.451383
  • Wang, S., Li, C., Copeland, L., Niu, Q., and Wang, S. (2015). Starch retrogradation: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety14, 568-585. doi.org/10.1111/1541-4337.12143
  • Wang, Y., Belton, P. S., Bridon, H., Garanger, E., Wellner, N., Parker, M. L., Grant, A., Feillet, P., and Noel, T. R. (2001). Physicochemical studies of caroubin: a gluten-like protein. Journal of Agricultural and Food Chemistry49, 3414-3419. doi.org/10.1021/jf010076u
  • Wu, D. (2016). Recycle technology for potato peel waste processing: A review. Procedia Environmental Sciences31, 103-107. doi.org/10.1016/j.proenv.2016.02.014
  • van Soest, J. J., Tournois, H., de Wit, D., and Vliegenthart, J. F. (1995). Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydrate Research279, 201-214. doi.org/10.1016/0008-6215(95)00270-7
  • Vodovotz, Y., Hallberg, L., and Chinachoti, P. (1996). Effect of aging and drying on thermomechanical properties of white bread as characterized by dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). Cereal Chemistry73, 264-270.
  • Zhou, C. F., Qian, P., Meng, J., Gao, S. M., and Lu, R. R. (2016). Effect of glycerol and sorbitol on the properties of dough and white bread. Cereal Chemistry93, 196-200. doi.org/10.1094/CCHEM-04-15-0087-R
  • Zhu, F. (2015). Interactions between starch and phenolic compound. Trends in Food Science and Technology43, 129-143. doi.org/10.1016/j.tifs.2015.02.003
  • Zhu, Y., Wen, P., Wang, P., Li, Y., Tong, Y., Ren, F., and Liu, S. (2022). Influence of native cellulose, microcrystalline cellulose and soluble cellodextrin on inhibition of starch digestibility. International Journal of Biological Macromolecules219, 491-499. doi.org/10.1016/j.ijbiomac.2022.07.243