Revista Mexicana de Ingeniería Química, Vol. 23, No. 1 (2024), IA24159


Production of reducing sugars from leaves crown of pineapple, corn stalk and rose stalk using phosphoric acid: Kinetics and thermodynamics

N. Flores-Alamo, D. Gutiérrez-López, M. J. Solache-Ríos, F. Cuellar-Robles, M. del C. Carreño-de-León

https://doi.org/10.24275/rmiq/IA24159


 

Abstract

The kinetics and thermodynamics of hydrolysis of diluted H3PO4 with three residual lignocellulosic materials (leaves crown of pineapple, LC; Zea mays rachis, CC; and rose stalk, RS) were used to study the production of reducing sugars. Three acid concentrations (1, 1.5, and 2M) and three temperatures (105, 120, and 150 °C) were tested for each material. An increase in acid concentration and temperature was conducive to sugar production. LC and the CC showed good capacity to produce reducing sugars in compared to RS. For LC and CC better conditions were 120 °C and 2.0 M; however, similar results were observed at 105 °C and 2.0 M. The best hydrolysis reaction time was 120 minutes to produce the greatest amount of reducing sugars. Hydrolysis kinetics showed that production exceeded the decomposition of sugars (k1 k2, kr > 1) with LC and CC. Thermodynamics analysis indicated that endothermic and non-spontaneous processes were involved for the production and decomposition of sugars. The magnitude of activation energy of RS was the highest of all three materials, this shows that RS was the most difficult material to hydrolyze.

Keywords: hydrolysis, reducing sugars, thermodynamics, lignocellulosic materials, kinetics.

 


References

  • Antonio-Narcizo, L. C., Pérez-Pérez, W. D., Tomasini, A., García-Martínez, J. C., & León-Santiestebán, H. H. (2023). Ethanol production from Mexican fruit wastes using a new Saccharomyces cerevisiae strain. Revista Mexicana de Ingeniería Química22(1), Bio2977-Bio2977. https://doi.org/10.24275/rmiq/Bio2977
  • Alvira, P., Tomás, E., Ballesteros, M., y Negro, M. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review, Bioresouce Technology, 101(13):4851-4861. https://doi.org/10.1016/j.biortech.2009.11.093
  • Adeogun, A.I., Agboola B.E., Idowu M.A. & Shittu T.A. (2019). ZnCl2 enhanced acid hydrolysis of pretreated corncob for glucose production: Kinetics, thermodynamics, and optimization analysis. Journal of Bioresources and Bioproducts, 4(3). https://doi.org/10.12162/jbb.v4i3.003
  • Ajala, E.O., Ajala, M.A., Tijani, I.A., Adebisi, A.A. & Suru, I. (2020). Kinetics modelling of acid hydrolysis of cassava (Manihot esculanta Cranz) peel and its hydrolysate chemical characterisation. Journal of King Saud University-Science, 32(4). https://doi.org/10.1016/j.jksus.2020.03.003
  • Boontum, A., Phetsom, J., Rodiahwati, W., Kitsubthawee, K. & Kuntothom, T. (2019). Characterization of diluted-acid pretreatment of water hyacinth. Applied Science and Engineering Progress, 12(4). https://doi.org/10.14416/j.asep.2019.09.003
  • Brígida, A.I.S., Calado, V.M.A., Gonçalves, L.R.B. & Coelho, M.A.Z. (2010). Effect of chemical treatments on properties of green coconut fiber. Carbohydrate Polymers, 79(4). https://doi.org/10.1016/j.carbpol.2009.10.005
  • Bagby, M.O., Nelson, G.H., Helman, E.G. Clark, T.F. (1971). Determination of lignin non-wood plant fiber sources. TAPPI J.54, 11.
  • Cao, L., Chen, H., Tsang, D.C.W., Luo, G., Hao, S., Zhang, S. & Chen, J. (2018). Optimizing xylose production from pinewood sawdust through dilute-phosphoric-acid hydrolysis by response surface methodology. Journal of Cleaner Production, 178. https://doi.org/10.1016/j.jclepro.2018.01.039
  • Castro, E., Nieves, I.U., Mullinnix, M.T., Sagues, W.J., Hoffman, R.W., Fernández-Sandoval M.T., Tian, Z., Rockwood, D.L., Tamang, B. & Ingram, L.O. (2014). Optimization of dilute-phosphoric-acid steam pretreatment of Eucalyptus benthamii for biofuel production. Applied Energy, 125. https://doi.org/10.1016/j.apenergy.2014.03.047
  • Coates, J. (2006). Interpretation of Infrared Spectra, A Practical Approach. Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd., Chichester, 10881-10882
  • Contreras-Zarazúa, G., Martin-Martin, M., Sánchez-Ramirez, E. & Segovia-Hernández. J.G. (2022). Furfural production from agricultural residues using different intensified separation and pretreatment alternatives. Economic and environmental assessment. Chemical Engineering and Processing - Process Intensification, 171. https://doi.org/10.1016/j.cep.2021.108569
  • Cortes, G., Ibla, J., Calderón, L. & Herrera, A. (2013). Cuantificación de azúcares reductores en las cáscaras de naranja y banano. Revista de Tecnología, 12(2): 72-76. https://doi.org/10.18270/rt.v12i2.772
  • Dai, D. & Fan, M. (2010). Characteristic and performance of elementary hemp fibre. Materials Sciences and Applications, 01(06). https://doi.org/10.4236/msa.2010.16049
  • Díaz-Blanco, D.I., de La Cruz, J.R., López-Linares, J.C., Morales-Martínez, T.K., Ruiz, E., Rios-González, L.J., Romero, I. & Castro, E. (2018). Optimization of dilute acid pretreatment of Agave lechuguilla and ethanol production by co-fermentation with Escherichia coli MM160. Industrial Crops and Products, 114. https://doi.org/10.1016/j.indcrop.2018.01.074
  • Fan, L. T., Gharpuray, M. M., & Lee, Y. H. (2012). Cellulose hydrolysis (Vol. 3). Springer Science & Business Media.
  • Fritsch, C., Staebler, A., Happel, A., Márquez, M.A.C., Aguiló-Aguayo, I., Abadias, M., Gallur, M., Cigognini, I.M., Montanari, A., López, M.J., Suárez-Estrella, F., Brunton, N., Luengo, E., Sisti, L., Ferri, M. & Belotti, G. (2017). Processing, valorization and application of bio-waste derived compounds from potato, tomato, olive, and cereals: A review. Sustainability (Switzerland) 9(8). https://doi.org/10.3390/su9081492
  • Guerra-Rodríguez, E., Portilla-Rivera, O.M., Jarquín-Enríquez, L., Ramírez, J.A. & Vázquez M. (2012). Acid hydrolysis of wheat straw: A kinetic study. Biomass and Bioenergy, 36. https://doi.org/10.1016/j.biombioe.2011.11.005
  • Gurgel, L.V.A., Marabezi, K., Zanbom, M.D. & Curvelo, A.A.D.S. (2012). Dilute acid hydrolysis of sugar cane bagasse at high temperatures: A Kinetic study of cellulose saccharification and glucose decomposition. Part I: Sulfuric acid as the catalyst. Industrial and Engineering Chemistry Research, 51(3). https://doi.org/10.1021/ie2025739
  • Gutiérrez-Lopez, D., Carreño-de-León, M.C., Solache-Ríos, M.J., Gomora-Hernandez, J.C., Ventura-Cruz, S. & Flores-Alamo, N. (2022). Kinetic and thermodynamic study on acid hydrolysis of Zea mays rachis, rose stalk, and leaves crown of pineapple. Chemical Engineering Communications. https://doi.org/10.1080/00986445.2022.2129620
  • Hernández-Teyssier, E. L., Ramírez-Vargas, M. R., Ramírez-Castillo, M. L., & Tellez-Jurado, A. (2023). Integration of extraction and acid hydrolysis processes as a strategy for better use and obtaining products from coffee residues. Revista Mexicana de Ingeniería Química22(1), Bio3021-Bio3021. https://doi.org/10.24275/rmiq/Bio3021
  • Jang, M.O. & Choi, G. (2018). Techno-economic analysis of butanol production from lignocellulosic biomass by concentrated acid pretreatment and hydrolysis plus continuous fermentation. Biochemical Engineering Journal, 134. https://doi.org/10.1016/j.bej.2018.03.002
  • Jung, Y.H., Kim, I.J., Kim, H.K. & Kim, K.H. (2013). Dilute acid pretreatment of lignocellulose for whole slurry ethanol fermentation. Bioresource Technology, 132. https://doi.org/10.1016/j.biortech.2012.12.151
  • Kumar, G., Bakonyi, P., Periyasamy, S., Kim, S. H., Nemestóthy, N., & Bélafi-Bakó, K. (2015). Lignocellulose biohydrogen: practical challenges and recent progress. Renewable and Sustainable Energy Reviews44, 728-737. https://doi.org/10.1016/j.rser.2015.01.042
  • Lavarack, B.P., Griffin, G.J., & Rodman, D. (2002). The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose, and other products. Biomass and Bioenergy, 23(5). https://doi.org/10.1016/S0961-9534(02)00066-1
  • Li, P., Cai, D., Luo, Z., Qin, P., Chen, C., Wang, Y., Zhang, C., Wang, Z. & Tan, T. (2016). Effect of acid pretreatment on different parts of corn stalk for second generation ethanol production. Bioresource Technology, 206. https://doi.org/10.1016/j.biortech.2016.01.077
  • Woiciechowski, A.L., Neto, C.J.D., de Souza Vandenberghe, L.P., de Carvalho Neto, D.P., Sydney, A.C.N., Letti, L.A.J. & Soccol, C.R. (2020). Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance–Conventional processing and recent advances. Bioresource technology304, 122848. https://doi.org/10.1016/j.biortech.2020.122848
  • Lu, P. & Hsieh, Y.L. (2010). Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydrate polymers82(2), 329-336.https://doi.org/10.1016/j.carbpol.2010.04.073
  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry31(3), 426-428. https://doi.org/10.1021/ac60147a030
  • Ranganathan, S., Macdonald, D.G. & Bakhshi, N.N. (1985). Kinetic studies of wheat straw hydrolysis using sulphuric acid. The Canadian Journal of Chemical Engineering, 63(5). https://doi.org/10.1002/cjce.5450630521
  • Saeman, J.F. (1945). Kinetics of wood saccharification: Hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Industrial & Engineering Chemistry, 37(1). https://doi.org/10.1021/ie50421a009
  • Saha, S., Jeon, B.H., Kurade, M.B., Jadhav, S.B., Chatterjee, P.K., Chang, S.W., Govindwar, S.P. & Kim, S.J. (2018). Optimization of dilute acetic acid pretreatment of mixed fruit waste for increased methane production. Journal of Cleaner Production, 190. https://doi.org/10.1016/j.jclepro.2018.04.193
  • Sahoo, D., Ummalyma, S.B., Okram, A.K., Pandey, A., Sankar, M. & Sukumaran, R.K. (2018). Effect of dilute acid pretreatment of wild rice grass (Zizania latifolia) from Loktak Lake for enzymatic hydrolysis. Bioresource Technology, 253. https://doi.org/10.1016/j.biortech.2018.01.048
  • Saien, J., Moradi, M., & Soleymani, A. R. (2017). Homogenous persulfate and periodate photochemical treatment of furfural in aqueous solutions. CLEAN–Soil, Air, Water45(3), 1600460. https://doi.org/10.1002/clen.201600460
  • Saratale, G.D., Chen, S.D., Lo, Y.C., Saratale, R.G. & Chang, J.S. (2008). Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation: A review. In Journal of Scientific and Industrial Research 67(11).
  • Sarkar, N. & Aikat, K. (2013). Kinetic study of acid hydrolysis of rice straw. ISRN Biotechnology. https://doi.org/10.5402/2013/170615
  • Imman, S., Kreetachat, T., Khongchamnan, P., Laosiripojana, N., Champreda, V., Suwannahong, K., Sakulthaew, C., Chokejaroenrat, C. & Suriyachai, N. (2021). Optimization of sugar recovery from pineapple leaves by acid-catalyzed liquid hot water pretreatment for bioethanol production. Energy Reports7, 6945-6954. https://doi.org/10.1016/j.egyr.2021.10.076
  • Sarma, R., Dolui, A.K. & Kumar, A. (2014). Thermodynamic and kinetic studies of α-amylase catalyzed reaction in free and carrageenan/chitosan immobilized state. Asian Journal of Chemistry, 26(3). https://doi.org/10.14233/ajchem.2014.15492
  • Sun, S.L., Sun, S.N., Wen, J.L., Zhang, X.M., Peng, F. & Sun, R.C. (2015). Assessment of integrated process based on hydrothermal and alkaline treatments for enzymatic saccharification of sweet sorghum stems. Bioresource Technology, 175. https://doi.org/10.1016/j.biortech.2014.10.111
  • Thakur, S., Shrivastava, B., Ingale, S., Kuhad, R.C. & Gupte, A. (2013). Degradation and selective ligninolysis of wheat straw and banana stem for an efficient bioethanol production using fungal and chemical pretreatment. Biotech, 3(5). https://doi.org/10.1007/s13205-012-0102-4
  • Tizazu, B.Z. & Moholkar, V.S. (2018). Kinetic and thermodynamic analysis of dilute acid hydrolysis of sugarcane bagasse. Bioresource Technology, 250. https://doi.org/10.1016/j.biortech.2017.11.032
  • TAPPI 17 m-55. In Cellulose in Wood; TAPPI Press: Atlanta, GA, USA, 1955.
  • Ventura-Cruz, S. & Tecante, A. (2019). Extraction and characterization of cellulose nanofibers from rose stalks (Rosa spp.). Carbohydrate Polymers, 220. https://doi.org/10.1016/j.carbpol.2019.05.053
  • Zhang, H., Jin, Q., Xu, R., Yan, L. & Lin, Z. (2011). Kinetic studies of xylan hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor. Frontiers of Chemical Engineering in China, 5(2). https://doi.org/10.1007/s11705-010-1010-y
  • Zheng, Y., Zhao, J., Xu, F. & Li, Y. (2014). Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science 42(1). https://doi.org/10.1016/j.pecs.2014.01.001