Vol. 23, No. 2 (2024), Alim24220 https://doi.org/10.24275/rmiq/Alim24220


Influence of geographical location and type of thermal treatment on the nutritional and physicochemical properties of pacaya inflorescences


 

Authors

P. Mancera-Castro, L. González-Cruz, J.M.S. Juárez-Goiz, N.L. Flores-Martínez, A. Bernardino-Nicanor


Abstract

In this study, the effects of thermal treatment and geographical location on the nutritional profile, techno-functional properties, and chemical-structural changes of Chamaedorea tepejilote were investigated. The results showed that both parameters caused changes in lipid and crude fiber content. The techno-functional properties (water absorption capacity, oil absorption capacity, swelling capacity, and solubility in water) showed significant differences (p < 0.05) due to thermal treatment, with cooking in the microwave and thermal treatment yielding the lowest values. Geographical location caused differences (p < 0.05) especially in water solubility, which was associated with changes in crude fiber composition. The FTIR spectrum showed changes in the profiles, especially in the bands associated with cellulose, pectin, hemicellulose, and protein signals. This is due to the high temperature, steam pressure, and microwave during the thermal treatment, but also to the geographical location; perhaps both parameters triggered the hydrolysis of the bonds of these biomolecules. According to the results of this work, geographical location and thermal treatment are parameters that influence the physical, chemical, and techno-functional properties of pacaya inflorescences.


Keywords

Chamaedorea tepejilote, techno-functional, properties, FTIR, thermal treatments, geographic location.


References

  • Abbas, O., Compère, G., Larondelle, Y., Pompeu, D., Rogez, H., & Baeten, V. (2017). Phenolic compound explorer: A mid-infrared spectroscopy database. Vibrational Spectroscopy 92, 111-118. http://doi.org/10.1016/j.vibspec.2017.05.008
  • Adebayo, Q., Shittu, L. T., Sogunle, K. A., Taiwo, M. A., & Zubairu, I.K. (2020). Nutritional qualities of three common tomato cultivars (UTC, Dan-Eka and Dan-Masari) in Dutsin-ma local government area Katsina state. European Journal of Agriculture and Food Sciences 2(6), 1-6. http://doi.org/10.24018/ejfood.2020.2.6.166
  • Ahmed, F. A. and Ali, R. F. M. (2013). Bioactive Compounds and Antioxidant Activity of Fresh and Processed White Cauliflower. BioMed Research International 2013, 1-9. http://dx.doi.org/10.1155/2013/367819
  • Amor, G. B., Farhat, M. B., Beji-Serairi, R., Selmi, S., Saidani-Tounsi, M., & Abdelly, C. (2023). Impact of cooking treatments on nutritional quality, phytochemical composition and antioxidant properties of Lepidium sativum L. seeds. Journal of Food Measurement and Characterization 17, 2944-2952. https://doi.org/10.1007/s11694-023-01851-6
  • Association of Official Agricultural Chemists [AOAC]. (1995). Official methods of analysis of AOAC international. 16 th ed. AOAC International, USA.
  • Badwaik, L. S., Gautam, G., & Deka, S. C. (2015). Influence of Blanching on Antioxidant, Nutritional and Physical Properties of Bamboo Shoot. The Journal of Agricultural Sciences 10(3), 140-150.
  • Barth, A. (2007). Infrared spectroscopy of proteins. Biochimica et Biophysica Acta (BBA) – Bioenergetics 1767(9), 1073-1101. https://doi.org/10.1016/j.bbabio.2007.06.004
  • Bashir, K., Swer, T. L., Prakash, K. S., & Aggarwal, M. (2017). Physico-chemical and functional properties of gamma irradiated whole flour and starch. LWT 76, 131-139. https://doi.org/10.1016/j.lwt.2016.10.050
  • Benitez, V., Rebollo-Hernanz, M., Hernanz, S., Chantres, S., Aguilera, Y., & Martin-Cabrejas, M. A. (2019). Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization. Food Research International 122, 105-113. https://doi.org/10.1016/j.foodres.2019.04.002
  • Calix-Rivera, C. S., Villanueva, M., Náthia-Neves, G., & Ronda, F. (2023). Changes on techno-functional, thermal, rheological, and micro-structural properties of Teg flours induced by microwave radiation-development of new improved gluten-free ingredients. Foods 12, 1345. http://doi.org/10.3390/foods12061345
  • Canteri, M. H. G., Renard, C. M. G. C., Bouryellec, C. L., & Bureau, S. (2019). ATR-FTIR spectroscopy to determine cell wall composition: Application on a large diversity of fruits and vegetables. Carbohydrates Polymers 212, 186-196. http://doi.org/10.1016/j.carbpol.2019.02.021
  • Carola Cruz, E., & Andrade-Cetto, A. (2015). Ethnopharmacological field study of the plants used to treat type 2 diabetes among the Cakchiquels in Guatemala. Journal of Ethnopharmacology 159, 238-244. https://doi.org/10.1016/j.jep.2014.11.021
  • Castillo-Mont, J. J., Gallardo, N. R., & Johnson, D. V. (1994). The pacaya Palm (Chamaedorea tepejilote; Arecaceae). Economic Botany 48, 68-75. http://doi.org/10.1007/BF02901383
  • Centurión-Hidalgo, D., Alor-Chávez, M. J., Espinosa-Moreno, J., Gómez-García, E., Solano, M. L., & Poot-Matu, J. E. (2009). Contenido nutricional de inflorescencias de palmas en la sierra del estado de Tabasco. Universidad y Ciencia 25, 193-199.
  • Chandra, S., Singh, S., & Kumari, D. (2015). Evaluation of functional properties of composite flours and sensorial attributes of composite flour biscuits. Journal of Food Science and Technology 52, 3681-3688. https://doi.org/10.1007/s13197-014-1427-2
  • Chen, X., Yu, J., Zhang, Z., & Lu, C. (2011). Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydrate Polymers 85, 245-250. https://doi.org/10.1016/j.carbpol.2011.02.022
  • Chen, Y., Zhang, B. C., Sun, Y. H., Zhang, J. G., Sun, H. J., & Wei, Z. J. (2015). Physicochemical properties and adsorption of cholesterol by okra (Abelmoschus esculentus) powder. Food & Function 6, 3728-3736. https://doi.org/10.1039/C5FO00600G
  • Cheng, S., Huang, A., Wang, S., & Zhang, Q. (2016). Effect of different heat treatment temperatures on the chemical composition and structure of Chinese Fir Wood. BioResources 11(2), 4006-4016.
  • Cheng, D., Jiang, S., & Zhang, Q. (2013). Effect of hydrothermal treatment with different aqueous solutions on the mold resistance of moso bamboo with chemical and FTIR analysis. BioResources 8(1), 371-382.
  • Churkova, B. G. (2013). Content of crude protein, crude fiber and crude ash in dry mass of birdsfoot trefoil varieties and populations. American Journal of Agricultural Science and Technology 1(3), 77-83. https://doi.org/10.7726/ajast.2013.1007
  • Ciolacu, D., Ciolacu, F., & Popa, V. I. (2011). Amorphous cellulose – structure and characterización. Cellulose Chemistry and Technology 45(1-2), 13-21. https://doi.org/10.1016/j.foodchem.2010.06.077
  • Dong, W., Wang, D., Hu, R., Long, Y., & Ly, L. (2020). Chemical composition, structural and functional properties of soluble dietary fiber obtained from coffee peel using different extraction methods. Food Research International 136, 109497. https://doi.org/10.1016/j.foddres.2020.109497
  • Doniec, J., Florkiewicz, A., Duliński, R., & Filipiak-Florkiewicz, A. (2022). Impact of Hydrothermal Treatments on Nutritional Value and Mineral Bioaccessibility of Brussels Sprouts (Brassica oleracea var. gemmifera). Molecules 27(6), 1861. https://doi.org/10.3390/molecules27061861
  • Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry 124(2), 411-421.
  • Fajardo, A. R., Lopes, L. C., Pereira, A. G. B. Rubira, A. F., & Muniz, E. C. (2012). Polyelectrolyte complexes base on pectin-NH2 and chondroitin sulfate. Carbohydrate Polymers 87, 1950-1955. http://doi.org/10.1016/j.carbpol.2011.09.096
  • Flores-Silva, P., Martínez-Yañez, R. C., Rodríguez-Huezo, M. E., & Alvarez-Ramirez, J. (2022). Nutritional protein quality and digestibility changes during food processing. Revista Mexicana de Ingeniería Química 21(1), Alim2748. https://doi.org/10.24275/rmiq/Alim2748
  • González-Cruz, L., Hernández-Castillo, J. B. E., Juárez-Goiz, J. M. S., Flores-Martínez, N. L., & Bernardino-Nicanor, A. (2018). Efecto de los tratamientos térmicos tradicionales sobre la capacidad antioxidante y contenido de carotenoides de nopalitos. Revista Mexicana de Ingeniería Química 17(3), 823-833. http://dx.doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n3/Gonzalez
  • González-Cruz, L., Juárez-Goiz, J. M. S., Teniente-Martínez, G., Acosta-García, G., Flores-Martínez, N. L., & Bernardino-Nicanor, A. (2020). Structural changes in the proteins from two species of the genus vigna by the effect of different treatments. Revista Mexicana de Ingeniería Química 19(Sup. 1), 333-347. https://doi.org/10.24275/rmiq/Alim1550
  • Han, Z., Cai, M.-j., Cheng, J.-H., & Sun, D.-W. (2018). Effects of electric fields and electromagnetic wave on food proteins structure and functionality: A review. Trends in Foods Science and Technology 75, 1-9. http://doi.org/10.1016/j.tifs.2018.02.017
  • Hernández-Castillo, J. B. E., Bernardino-Nicanor, A., Vivar-Vera, M. d. l. Á., Montañez-Soto, J. L., Teniente-Martínez, G., Juárez-Goiz, J. M. S., & González-Cruz, L. (2020). Modifications of the proteins characteristics of pacaya caused by thermal treatment: A spectroscopic, electrophoretic and morphological study. Polymers 12, 1016. http://doi.org/10.3390/polym12051016
  • Hong, T., Yin, J.-Y., Nie, S.-P., & Xie, M.-Y. (2021). Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective. Food Chemistry: X 12, 100168. https://doi.org/10.1016/j.fochx.2021.100168
  • Jarošová, M., Lorenc, F., Bedrníček, J., Petrášková, E., Bjelková, M., Bártová, V., Jarošová, E.,Zdráhal, Z., Kyselka, J., Smetana, P., Kadlec, J., Stupková, A., & Bárta, A. (2024). Comparison of yield characteristics, chemical composition, lignans content and antioxidant potential of experimentally grown six linseed (Linum usitatissimum L.) cultivars. Plant Foods for Human Nutrition. https://doi.org/10.1007/s11130-023-01136-9 (Accepted for publication)
  • Jiang, G., Wu, Z., Ameer, K., Li, S., & Ramachandraiah, K. (2020). Particle size of ginseng (Panax ginseng Meyer) insoluble dietary fiber and its effect on physicochemical properties and antioxidant activities. Applied Biological Chemistry 63(70), 1-10. https://doi.org/10.1186/s13765-020-00558-2
  • Jitngarmkusol, S., Hongsywankul, J., & Tananuwong, K. (2008). Chemical compositions, functional properties, and microstructure of defatted macadamia flours. Food Chemistry 110, 23-30. https://doi.org/10.1016/j.foodchem.2008.01.050
  • Kac̆uráková, M., Capek, P., Sasinková, V., Wellner, N., & Ebringerová, A. (2000). FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydrate Polymers 43(2), 195-203. https://doi.org/10.1016/S0144-8617(00)00151-X
  • Kallel, F., Bettaieb, F., Khiari, R., García, A., Bras, J., & Chaabouni, S. E. (2016). Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Industrial Crops and Products 87, 287-296. https://doi.org/10.1016/j.indcrop.2016.04.060
  • Kasale, K., Malagi, U., & Naik, K. R. (2019). Nutrient composition and antioxidant components of newer carrot germplasm. The Pharma Innovation Journal 8(1), 23-28.
  • Kim, E.-H., Lee, S.-Y., Baek, D.-Y., Park, S.-Y., Lee, S.-G., Ryu, T.-H., Lee, S.-K., Kang, H.-J., Kwon, O.-H., Kil, M., & Oh, S.-W. (2019). A comparison of the nutrient composition and statistical profile in red pepper fruits (Capsicums annuum L.) based on genetic and environmental factors. Applied Biological Chemistry 62, 48. http://doi.org/10.1186/s13765-019-0456-y
  • Kyomugasho, C., Christiaens, S., Shpigelman, A., Van Loey, A. M., & Hendrickx, M. E. (2015). FT-IR spectroscopy, a reliable method for routine analysis of the degree of methylesterification of pectin indifferent fruit- and vegetable-based matrices. Food Chemistry 176, 82-90. https://doi.org/10.1016/j.foodchem.2014.10.033
  • Kong, J., & Yu, S. (2007). Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica 39(8), 549-559. https://doi.org/10.1111/j.1745-7270.20007.00320.x
  • La Cava, E. L., Gerbino, E., Sgroppo, S. C., & Gómez-Zavaglia, A. (2018). Characterization of pectins extracted from different varieties of Pink/red and white grapefruits [Citrus paradisi (Macf.)] by thermal treatment and thermosonication. Journal of Food Science 83(6), 1613-1621. https://doi.org/10.1111/1750-3841.14183
  • Latorre, M. E., Plá, M. F. E., Rojas, A. M., & Gerchenson, L. N. (2013). Blanching of red beet (Beta vulgaris L. var. conditiva) root. Effect of hot water or microwave radiation on cell wall characteristics. LWT-Food Science and Technology 50(1), 193-203. https://doi.org/10.1016/j.lwt.2012.06.004
  • Lee, J. J., Crosby, K. M., Pike, L. M., Yoo, K. S., & Leskovar, D. I. (2005). Impact of genetic and environmental variation on development of flavonoids and carotenoids in pepper (Capsicum spp.). Scientia Horticulturae 106, 341-352. https://doi.org/ 10.1016/j.scienta.2005.04.008
  • Liu, J., Bi, J., McClements, D. J., Liu, X., Yi, J., Lyu, J., Zhou, M., Verkerk, R., Dekker, M., Wu, X., & Liu, D. (2020). Impacts of thermal and non-thermal processing on structure and functionality of pectin in fruit- and vegetable- based products: A review. Carbohydrate Polymers 250, 116890. http://doi.org/10.1016/j.carbpol.2020.116890
  • Liu, X., Renard, C. M. G. C., Bureau, S., & Bourvellec, C. L. (2021). Revisiting the contribution of ATR-FTIR spectroscopy to characterize plant cell wall polysaccharides. Carbohydrate Polymers 262, 117935. https://doi.org/10.1016/j.carbpol.2021.117935
  • López, G., Ros, G., Rincón, F., Periago, M. J., Martínez, M. C., & Ortuño, J. (1996). Relationship between physical and hydration properties of soluble and insoluble fiber of artichoke. Journal of Agricultural and Food Chemistry 44, 2773-2778. https://doi.org/10.1021/jf9507699
  • Lucarini, M., Durazzo, A., Kiefer, J., Santini, A., Lombardi-Boccia, G., Souto, E. B., Romani, A., Lampe, A., Ferrari Nicoli, S., Gabrielli, P., Bevilacqua, N., Campo, M., Morassut, M., & Cecchini, F. (2020). Grape seeds: chromatographic profile of fatty acids and phenolic compounds and qualitative analysis by FTIR-ATR spectroscopy. Foods 9, 10. https://doi.org/10.3390/foods9010010
  • Lumivero (2023). XLSTAT statistical and data analysis solution. Available at: https://www.xlstat.com/en. Accessed: October 29, 2023.
  • Lutz, M., Henríquez, C., & Escobar, M. (2011). Chemical composition and antioxidant properties of mature and baby artichokes (Cynara scolymus L.), raw and cooked. Journal of Food Composition and Analysis 24, 49-54. http://doi.org/10.1016/j.jfca.2010.001
  • Ma, Z., Boye, J. I., Simpson, B. K., Prasher, S. O., Monpetit, D., & Malconmson, L. (2011). Thermal processing effects on the functional properties and microstructure of lentil, chickpea, and pea flours. Food Research International 44, 2534-2544. https://doi.org/10.1016/j.foddres.2010.12.017
  • Ma, M.-G., Jia, N., Zhu, J.-F., Li, S.-M., Peng, F., & Sun, R.-C. (2012). Isolation and characterization of hemicelluloses extracted by hydrothermal pretreatment. Bioresource Technology 114, 677-683. https://doi.org/10.1016/j.biortech.2012.03.048
  • Mancera-Castro, P., Bernardino-Nicanor, A., Juárez-Goiz, J. M. S., Teniente-Martínez, G., & González-Cruz, L. (2022). Effect of the type of thermal treatment on the nutritional and nutraceutical characteristics of pacaya inflorescences (Chamaedorea tepejilote Liebm). Biology and Life Sciences Forum 18, 36. https://doi.org/10.3390/Foods2022-13015
  • McGhie, T. K., Hunt, M., & Barnett, L. E. (2005). Cultivar and growing region determine the antioxidant polyphenolic concentration and composition of apples grown in New Zealand. Journal of Agricultural and Food Chemistry 53(8), 3065-3070. https://doi.org/10.1021/jf047832r
  • Montejos Ramos, J. J., & Márquez Montes, R. (2012). Incorporación de la inflorescencia comestible de palma (Arecaceae: Chamaedorea tepejilote Liebm.) en un cereal para desayuno. Lacandonia 6, 111-121.
  • Morales-Tapia, A. A., González-Jiménez, F. E., Vivar-Vera, G., Del Ángel-Zumaya, J. A., Reyes-Reyes, M., Alamilla-Beltrán, L., Barojas-Zavaleta, E., Cooper-Bribiesca, B. L., & Jiménez-Guzmán, J. (2022). Use of freeze-drying and convection as drying methods of the xoconostle by-product and the effect on its antioxidant properties. Revista Mexicana de Ingeniería Química 21(2), Alim2692. https://doi.org/10.24275/rmiq/Alim2692
  • Nasrabadi, M. N., Doost, A. S., & Mezzenga, R. (2021). Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids 118, 106789. https://doi.org/10.1016/j.foodhyd.2021.106789
  • Ochoa-Rivas, A., Nava-Valdez, Y., Serna-Saldívar, S. O., & Chuck-Hernández, C. (2017). Microwave and Ultrasound to Enhance Protein Extraction from Peanut Flour under Alkaline Conditions: Effects in Yield and Functional Properties of Protein Isolates. Food and Bioprocess Technology 10, 543-555. https://doi.org/10.1007/s11947-016-1838-3
  • Özgenç, Ö., Durmaz, S., Boyaci, I. H., & Eksi-Kocak, H. (2017). Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 171, 395-400. https://doi.org/10.1016/j.saa.2016.08.026
  • Palacios Pola, G., Rodríguez García, T., Ayvar Ramos, P., Pantoja Enríquez, J., Bartolón Roblero, Y. I., & Abud Archila, M. (2014). Incorporación de chaya Cnidoscolus aconitifolius (Mill.) I.M. Johnst. (Euphorbiaceae) y pacaya Chamaedorea tepejilote Liebm. (Arecaceae), en alimentos de consumo frecuente con medición de parámetros de calidad sanitaria, sensorial y nutriticonal. Lacandonia 8, 27-32.
  • Pankyamma, V., Yadav Mokam, S., Debbarma, J., & Rao, M. (2019). Effects of microwave vacuum drying and conventional drying methods on the physicochemical and microstructural properties of squid shreds. Journal of the Science of Food and Agriculture 99(13), 5778-5783. https://doi.org/10.1002/jsfa.9846
  • Pérez, C. G., Zavala, M. A. S., Ventura, E. R., Pérez, S. G., & Ponce, H. M. (2008). Evaluation of anti-tussive activity of Chamaedorea tepejilote. Journal of Ethnopharmacology 120(2), 138-140. https://doi.org/10.1016/j.jep.2008.07.046
  • Pérez-Burillo, S., Rufián-Henares, J. A., & Pastoriza, S. (2019). Effect of home cooking on the antioxidant capacity of vegetables: Relationship with Maillard reaction indicators. Food Research International 121, 514-523. https://doi.org/10.1016/j.foddres.2018.12.007
  • Qamar, S., Manrique, Y. J., Parekh, H., & Falconer, J. R. (2020). Nuts, cereals, seeds and legumes proteins derived emulsifiers as a source of plant protein beverages: A review. Critical Reviews in Food Science and Nutrition 60(16): 2742-2762. https://doi.org/10.1080/10408398.2019.1657062
  • Resende, L. M., Franca, A. S., & Oliveira, L. S. (2019). Buriti (Mauritia flexuosa L. f.) fruit by-products flours: Evaluation as source of dietary fibers and natural antioxidants. Food Chemistry 270, 53-60. https://10.1016/j.foodchem.2018.07.079
  • Riquett Robles, D., & Solórzano Carranza, E. R. (2013). Actividad hipoglucemiante de Chamaedorea tepejilote Liebm (pacaya). Revista Cubana de Plantas Medicinales 18, 27-33.
  • Servicio Metereológico Nacional. (2020). https://smn.conagua.gob.mx/es/. Accesado:17 de enero 2024.
  • Sivakumar, D., Chen, L., & Sultanbawa, Y. (2018). A comprehensive review on beneficial dietary phytochemicals in common traditional southern African leafy vegetables. Food Science & Nutrition 6, 714-727. https://doi.org/10.1002/fsn3.643
  • Szymanska-Chargot, M., & Zdunek, A. (2013). Use of FT-IR spectra and PCA to the bulk characterization of cell wall residues of fruits and vegetables along a fraction process. Food Biophysics 8, 29-42. https://doi.org/10.1007/s11483-012-9279-7
  • Tejada-Ortigoza, V., Garcia-Amezquita, L. E., Serna-Saldívar, S. O., Martín-Belloso, O., & Welti-Chanes, J. (2018). High hydrostatic pressure and mild heat treatments for the modification of Orange peel dietary fiber: Effects on hygroscopic properties and functionality. Food and Bioprocess Technology 11, 110-121. https://doi.org/ 10.1007/s11947-017-1998-9
  • Tejada-Ortigoza, V., Garcia-Amezquita, L. E., Serna-Saldívar, S. O., & Welti-Chanes J. (2016). Advances in the Functional Characterization and Extraction Processes of Dietary Fiber. Food Engineering Reviews 8, 251-271. https://doi.org/10.1007/s12393-015-9134-y
  • Timilsena, Y. P., Adhikari, R., Borrow, C. J., & Adhikari, B. (2016). Physicochemical and functional properties of protein isolate produced from Australian chia seeds. Food Chemistry 212, 648-656. https://doi.org/10.1016/j.foodchem.2016.06.017
  • Toydemir, G., Subasi, B. G., Hall, R. D., Beekwilder, J., Boyacioglu, D., & Capanoglu, E. (2022). Effect of food processing on antioxidants, their bioavailability and potential relevance to human health. Food Chemistry: X 14, 100334. https://doi.org/10.1016/j.fochx.2022.100334
  • Twarogowska, A., Van Poucke, C., & Van Droogenbroeck, B. (2020). Upcycling of Belgarian endive (Cichorium intybus var. foliosum) by-products. Chemical composition and functional properties of dietary fibre root powders. Food Chemistry 332, 127444. https://doi.org/10.1016/j.foodchem.2020.127444
  • van Boekel, M., Fogliano, V., Pellegrini, N., Stanton, C., Scholz, G., Lalljie, S., Somoza, V., Knorr, D., Jasti, P. R., & Eisenbrand, G. (2010). A review on the beneficial aspects of food processing. Molecular Nutrition & Food Research 54(9), 1215-1247. https://doi.org/10.1002/mnfr.200900608
  • Wang, Y., Sánchez-Velázquez, O. A., Martínez-Villaluenga, C., Goycoolea, F. M., & Hernández-Álvarez, A. J. (2023). Effect of protein extraction and fractionation of chia seeds grown in different locations: Nutritional, antinutritional and protein quality assessment. Food Bioscience 56, 103238. https://doi.org/10.1016/j.fbio.2023.103238
  • Wang, K., Li, M., Wang, Y., Liu, Z., & Ni, Y. (2021). Effects of extraction methods on the structural characteristics and functional properties of dietary fiber extracted from kiwifruit (Actinidia deliciosa). Food Hydrocolloids 11, 106162. https://doi.org/10.1016/j.foodhyd.2020.106162
  • Wang, S., Xu, X., Wang, S., Wang, J., & Peng, W. (2022). Effects on microwave treatment on structure, functional properties and antioxidant activities of germinated Tartary Buckwheat protein. Foods 11, 1373. https://doi.org/10.3390/foods11101373
  • Waseem, M., Akhtar, S., Qamar, M., Saeed, W., Ismail, T., & Esatbeyoglu, T. (2022). Effect of thermal and non-thermal processing on nutritional, functional, safety characteristics and sensory quality of white cabbage powder. Foods 11, 3802. https://doi.org/10.3390/fodds11233802
  • Zainudin, B. H., Wong, T. W., & Hamdan, H. (2018). Design of low molecular weight pectin and its nanoparticles through combination treatment of pectin by microwave and inorganic salts. Polymer Degradation and Stability 147, 35-40. https://doi.org/10.1016/j.polymdegradstab.2017.11.011
  • Zhang, B., Deng, Z., Tang, Y., Chen, P. X., Liu, R., Ramdath, D. D., Liu, Q., Hernandez, M., & Tsao, R. (2014). Effect of domestic cooking on carotenoids, tocopherols, fatty acids, phenolics, and antioxidant activities of lentils (Lens culinaris). Journal of Agricultural and Food Chemistry 62, 12585-12594. https://doi.org/10.1021/jf504181r
  • Zidani, S., & Boudraa, S. (2020). Effect of different drying methods on the heating under reflux and microwave extraction on techno-functional properties from the Elaeagnus angustifolia L., fruit. Journal of Agroalimentary Processes and Technologies 26(2), 91-101.