Vol. 23, No. 2 (2024), Alim24229 https://doi.org/10.24275/rmiq/Alim24229


Microencapsulation of green coffee oil: Encapsulation efficiency, morphology, and bioactive compound retention


 

Authors

P. Barajas-Álvarez, G. M. Guatemala-Morales, E. Arriola-Guevara, H. Espinosa-Andrews


Abstract

The development of functional foods that promote health benefits is one of the most active areas of research in food processing. The supercritical fluid green coffee oil has proven to be a rich source of polyunsaturated fatty acids and chlorogenic acid, which is a potent antioxidant. This study investigated the physicochemical characteristics of green coffee oil microcapsules, including encapsulation efficiency, morphology, and retention of bioactive compounds produced by piezoelectric atomizer technology. First, green coffee oil emulsions were produced by ultrasonication using two wall material/oil ratios (1 and 3) and two ultrasonication times (5 and 20 min). Dynamic and electrophoretic light scattering were used to measure the size and zeta potential of the emulsions. The emulsions were dried using a piezoelectric atomizer with a 5 µm mesh at 110 and 120 °C. The encapsulation efficiency, drying yield, morphology, and 5-caffeoylquinic acid retention were evaluated. The encapsulation efficiency ranged from 55.7 to 87.5%, while the drying yield varied from 51.7 to 80.8%. According to the SEM images, a low wall-material/oil ratio produced agglomerated particles, while a high ratio produced spherical particles. The retention of the 5-caffeoylquinic acid ranged from 23.0 to 85.5%. Green coffee oil powders could be applied as functional ingredients.


Keywords

green coffee oil, chlorogenic acid, microcapsules.


References

  • Barajas-Álvarez, P., Castillo-Herrera, G. A., Guatemala-Morales, G. M., Corona-González, R. I., Arriola-Guevara, E., and Espinosa-Andrews, H. (2021). Supercritical CO2-ethanol extraction of oil from green coffee beans: optimization conditions and bioactive compound identification. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-020-04933-1
  • Bhattacharjee, S. (2016). DLS and zeta potential - What they are and what they are not? Journal of Controlled Release, 235, 337–351. https://doi.org/10.1016/j.jconrel.2016.06.017
  • Cortés-Rodríguez, M., Gil-González, J. H., and Ortega-Toro, R. (2022). Influence of the feed composition and the spray drying process on the quality of a powdered mixture of blackberry (Rubus glaucus Benth). Revista Mexicana de Ingeniera Quimica, 21(3). https://doi.org/10.24275/rmiq/Alim2855
  • de Barros Fernandes, R. V., Borges, S. V., Silva, E. K., da Silva, Y. F., Barboza de Souza, H. J., do Carmo, E. L., Rodrigues de Oliveira, C., Yoshida, M. I., and Alvarenga Botrel, D. (2016). Study of ultrasound-assisted emulsions on microencapsulation of ginger essential oil by spray drying. Industrial Crops and Products, 94, 413–423. https://doi.org/10.1016/j.indcrop.2016.09.010
  • de Oliveira, W. Q., Wurlitzer, N. J., Araújo, A. W. de O., Comunian, T. A., Bastos, M. do S. R., de Oliveira, A. L., Magalhães, H. C. R., Ribeiro, H. L., de Figueiredo, R. W., and de Sousa, P. H. M. (2020). Complex coacervates of cashew gum and gelatin as carriers of green coffee oil: The effect of microcapsule application on the rheological and sensorial quality of a fruit juice. Food Research International, 131(December 2019), 109047. https://doi.org/10.1016/j.foodres.2020.109047
  • Desai, N. M., Gilbert Stanley, J., and Murthy, P. S. (2020). Green coffee nanoparticles: optimisation, in vitro bioactivity and bio-release property. Journal of Microencapsulation, 37(1), 52–64. https://doi.org/10.1080/02652048.2019.1692946
  • Díaz, D. I., Lugo, E., Pascual-Pineda, L. A., and Jiménez-Fernández, M. (2019). Encapsulation of carotenoid-rich paprika oleoresin through traditional and nano spray drying. Italian Journal of Food Science, 31(1), 125–138.
  • Efthymiopoulos, I., Hellier, P., Ladommatos, N., Kay, A., and Mills-Lamptey, B. (2019). Effect of Solvent Extraction Parameters on the Recovery of Oil From Spent Coffee Grounds for Biofuel Production. Waste and Biomass Valorization, 10(2), 253–264. https://doi.org/10.1007/s12649-017-0061-4
  • Espinosa-Andrews, H., and Páez-Hernández, G. (2020). Optimization of ultrasonication curcumin-hydroxylated lecithin nanoemulsions using response surface methodology. Journal of Food Science and Technology, 57(2), 549–556. https://doi.org/10.1007/s13197-019-04086-w
  • Frascareli, E. C., Silva, V. M., Tonon, R. V., and Hubinger, M. D. (2012). Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food and Bioproducts Processing, 90(3), 413–424. https://doi.org/10.1016/j.fbp.2011.12.002
  • García-Márquez, E., Higuera-Ciapara, I., and Espinosa-Andrews, H. (2017). Design of fish oil-in-water nanoemulsion by microfluidization. Innovative Food Science and Emerging Technologies, 40, 87–91. https://doi.org/10.1016/j.ifset.2016.11.007
  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., and Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40(9), 1107–1121. https://doi.org/10.1016/j.foodres.2007.07.004
  • Granados-Vallejo, M., Espinosa-Andrews, H., Guatemala-Morales, M. G., Esquivel-Solis, H., and Arriola-Guevara, E. (2019). Oxidative stability of green coffee oil (Coffea arabica) microencapsulated by spray drying. In Processes (Vol. 7, Issue 10). https://doi.org/10.3390/pr7100734
  • Gu, B., Linehan, B., and Tseng, Y.-C. (2015). Optimization of the Büchi B-90 spray drying process using central composite design for preparation of solid dispersions. International Journal of Pharmaceutics, 491(1–2), 208–217. https://doi.org/10.1016/j.ijpharm.2015.06.006
  • Guillén, M. D., and Cabo, N. (1997). Characterization of edible oils and lard by fourier transform infrared spectroscopy. Relationships between composition and frequency of concrete bands in the fingerprint region. Journal of the American Oil Chemists’ Society, 74(10), 1281–1286. https://doi.org/10.1007/s11746-997-0058-4
  • Guillén, M. D., Ruiz, A., Cabo, N., Chirinos, R., and Pascual, G. (2003). Characterization of Sacha Inchi ( Plukenetia volubilis L.) Oil by FTIR Spectroscopy and 1 H NMR . Comparison with Linseed Oil. Journal of the American Oil Chemists’Society, 80(8), 755–762.
  • Hu, Q., Gerhard, H., Upadhyaya, I., Venkitanarayanan, K., and Luo, Y. (2016). Antimicrobial eugenol nanoemulsion prepared by gum arabic and lecithin and evaluation of drying technologies. International Journal of Biological Macromolecules, 87, 130–140. https://doi.org/10.1016/j.ijbiomac.2016.02.051
  • Jayme, M. L., Dunstan, D. E., and Gee, M. L. (1999). Zeta potentials of gum arabic stabilised oil in water emulsions. Food Hydrocolloids, 13(6), 459–465. https://doi.org/https://doi.org/10.1016/S0268-005X(99)00029-6
  • Jeszka-Skowron, M., Stanisz, E., and De Peña, M. P. (2016). Relationship between antioxidant capacity, chlorogenic acids and elemental composition of green coffee. LWT - Food Science and Technology, 73, 243–250. https://doi.org/10.1016/j.lwt.2016.06.018
  • Lee, S. H., Heng, D., Ng, W. K., Chan, H. K., and Tan, R. B. H. (2011). Nano spray drying: A novel method for preparing protein nanoparticles for protein therapy. International Journal of Pharmaceutics, 403(1–2), 192–200. https://doi.org/10.1016/j.ijpharm.2010.10.012
  • Li, D., Zhao, Y., Wang, X., Tang, H., Wu, N., Wu, F., Yu, D., and Elfalleh, W. (2020). Effects of (+)-catechin on a rice bran protein oil-in-water emulsion: Droplet size, zeta-potential, emulsifying properties, and rheological behavior. Food Hydrocolloids, 98, 105306. https://doi.org/10.1016/J.FOODHYD.2019.105306
  • Li, X., Anton, N., Arpagaus, C., Belleteix, F., and Vandamme, T. F. (2010). Nanoparticles by spray drying using innovative new technology: The Büchi Nano Spray Dryer B-90. Journal of Controlled Release, 147(2), 304–310. https://doi.org/10.1016/j.jconrel.2010.07.113
  • Loan, L. T. K., Vinh, B. T., and Tai, N. V. (2023). Effect of gum arabic concentrations on drying kinetics, anthocyanin degradation and product qualities of purple rice bran extract dried by foam-mat technique. Revista Mexicana de Ingeniería Química, 23(1), 1–15. https://doi.org/10.24275/rmiq/Alim24157
  • Mahalakshmi, L., Leena, M. M., Moses, J. A., and Anandharamakrishnan, C. (2020). Micro- and nano-encapsulation of β-carotene in zein protein: size-dependent release and absorption behavior. Food and Function, 11(2), 1647–1660. https://doi.org/10.1039/C9FO02088H
  • Mills, C. E., Oruna-Concha, M. J., Mottram, D. S., Gibson, G. R., and Spencer, J. P. E. (2013). The effect of processing on chlorogenic acid content of commercially available coffee. Food Chemistry, 141(4), 3335–3340. https://doi.org/10.1016/j.foodchem.2013.06.014
  • Moeenfard, M., and Alves, A. (2020). New trends in coffee diterpenes research from technological to health aspects. Food Research International, 134(October 2019), 109207. https://doi.org/10.1016/j.foodres.2020.109207
  • Nallamuthu, I., Devi, A., and Khanum, F. (2015). Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian Journal of Pharmaceutical Sciences, 0, 3–11.
  • Nosari, A. B. F. L., Lima, J. F., Serra, O. A., and Freitas, L. A. P. (2015). Improved green coffee oil antioxidant activity for cosmetical purpose by spray drying microencapsulation. Brazilian Journal of Pharmacognosy, 25(3), 307–311. https://doi.org/10.1016/j.bjp.2015.04.006
  • Pedrozo, R. C., Antônio, E., Khalil, N. M., and Mainardes, R. M. (2020). Bovine serum albumin-based nanoparticles containing the flavonoid rutin produced by nano spray drying. In Brazilian Journal of Pharmaceutical Sciences (Vol. 56). scielo.
  • Pettinato, M., Aliakbarian, B., Casazza, A. A., and Perego, P. (2017). Encapsulation of Antioxidants from Spent Coffee Ground Extracts by Spray Drying. Chemical Engineering Transactions, 57, 1219–1224. https://doi.org/10.3303/CET1757204
  • Piñón-Balderrama, C. I. ;, Leyva-Porras, C. ;, Terán-Figueroa, Y. ;, Espinosa-Solís, V. ;, Álvarez-Salas, C. ;, and Saavedra-Leos, M. Z. (2020). Encapsulation of Active Ingredients in Food Industry by Spray-Drying and Nano Spray-Drying Technologies. Processes, 8, 889.
  • Prasad Reddy, M. N., Padma Ishwarya, S., and Anandharamakrishnan, C. (2019). Nanoencapsulation of roasted coffee bean oil in whey protein wall system through nanospray drying. Journal of Food Processing and Preservation, 43(3), 1–8. https://doi.org/10.1111/jfpp.13893
  • Raba, D. N., Poiana, M. A., Borozan, A. B., Stef, M., Radu, F., and Popa, M. V. (2015). Investigation on crude and high-temperature heated coffee oil by ATR-FTIR spectroscopy along with antioxidant and antimicrobial properties. PLoS ONE, 10(9), 1–20. https://doi.org/10.1371/journal.pone.0138080
  • Ruiz-Palomino, P., Guatemala-Morales, G., Mondragón-Cortéz, P. M., Zúñiga-González, E. A., Corona-González, R. I., and Arriola-Guevara, E. (2019). Empirical model of the chlorogenic acid degradation kinetics during coffee roasting in a spouted bed. Revista Mexicana de Ingeniera Quimica, 18(2), 387–396. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/Ruiz
  • Silva, V. M., Vieira, G. S., and Hubinger, M. D. (2014). Influence of different combinations of wall materials and homogenisation pressure on the microencapsulation of green coffee oil by spray drying. Food Research International, 61, 132–143. https://doi.org/10.1016/j.foodres.2014.01.052
  • Topala, C. M., and Tataru, L. D. (2015). Infrared Spectra of Green Arabica Coffee Extraction using Supercritical Carbon Dioxide and Soxhlet Technique. 8, 1–4.
  • Wagemaker, T., L., Fernandes, A. S., Campos, P. M., Rodrigues, L. M., and Rijo, P. (2012). Evaluation of antioxidant and antimicrobial activities of green coffee oil in cosmetic formulations. Biomedical and Biopharmaceutical Research, 9(2), 207–214.
  • Wang, T., Hu, Q., Zhou, M., Xue, J., and Luo, Y. (2016). Preparation of ultra-fine powders from polysaccharide-coated solid lipid nanoparticles and nanostructured lipid carriers by innovative nano spray drying technology. International Journal of Pharmaceutics, 511(1), 219–222. https://doi.org/10.1016/j.ijpharm.2016.07.005
  • Wong, T. W., and John, P. (2016). Advances in Spray Drying Technology for Nanoparticle Formation BT - Handbook of Nanoparticles (M. Aliofkhazraei, Ed.; pp. 329–346). Springer International Publishing. https://doi.org/10.1007/978-3-319-15338-4_18