Vol. 23, No. 2 (2024), Alim24237 https://doi.org/10.24275/rmiq/Alim24237


Assisted (ultrasound or high shear impeller) soybean oil/lecithin extraction of polyphenolic compounds from red cactus pear peel: Extracts effects on oleogels properties


 

Authors

Y.T. Obando-Galicia, G. Martínez-de Jesús, A. Totosaus


Abstract

This work aimed to compare the assisted extraction of polyphenol compounds from red cactus pear to elaborate stable oleogels, employing ultrasound or a high-shear impeller. A response surface method was employed to determine the simultaneous effect of temperature, soy lecithin percent, and ultrasound time or impeller speed, on polyphenols extraction employing soybean oil as solvent. The factors temperature, lecithin, and ultrasound time affected the amount of polyphenols extracted, although neither temperature nor lecithin presented an effect on polyphenols extraction in high-shear impeller extraction. With the enriched oil, two oleogels were elaborated using candelilla wax or soybean wax as oleogelators. Oleogels’ firmness was higher in samples obtained with ultrasound treatment (10.05 and 4,85 for candelilla wax or soybean wax, respectively, and 7.80 and 1,10 for candelilla wax or soybean wax, respectively), but the use of the high-shear impeller decreased the peroxide value after 60 days. Candelilla wax oleogels were harder and more stable to oxidation than soybean wax oleogels. This means that the use of a high-shear impeller in polyphenols extraction is not temperature dependent, as in the case of ultrasound, enhancing extraction yield, resulting in more stable oleogels against lipid oxidation.


Keywords

ultrasound, high-shear impeller, polyphenols extraction, oleogels, oxidative stability.


References

  • AOAC (1999). Official Method 965.33: Peroxide value of oils and fats. Official Method of Analysis of AOAC International (16th Ed.), Washington, DC: AOAC.
  • Blake, A.I., Co, E., & Marangoni, A.G., 2014. Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity. Journal of American Oil Chemists’ Society, 91, 885-903. https://doi.org/10.1007/s11746-014-2435-0
  • Blake, A.I., Toro-Vazquez, J.F. & Hwang, H.-S. (2018). Wax oleogels. In: Edible Oleogels, 2nd. Ed., Marangoni, A.G. & Garti, N. (Eds.). Academic Press, New York, pp. 133-171, https://doi.org/10.1016/B978-0-12-814270-7.00006-X
  • Boukobza, F., Dunphy, P. J., & Taylor, A.J. (2001). Measurement of lipid oxidation-derived volatiles in fresh tomatoes. Postharvest Biology and Technology, 23(2), 117-131. https://doi.org/10.1016/S0925-5214(01)00122-3
  • Chávez-Zepeda, L.P., Cruz, M.G., Díaz-Vela, J., Pérez-Chabela, M.L. (2009) Utilización de subproductos agroindustriales como fuente de fibra para productos cárnicos. Nacameh. 3(2): 71-82. https://doi.org/10.24275/uam/izt/dcbs/nacameh/2009v3n2/Chavez
  • Choe, E., & Min, D. B. (2006). Mechanisms and Factors for Edible Oil Oxidation. Comprehensive Review in Food Science and Food Safety, 5(4), 169-186. https://doi.org/10.1111/j.1541-4337.2006.00009.x
  • Da Porto, C., Porretto, E., & Decorti, D. (2013). Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrasonics Sonochemistry, 20(4), 1076-1080. https://doi.org/10.1016/j.ultsonch.2012.12.002
  • Freitas, S., Merkle, H.P., & Gander, B. (2005). Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. Journal of Controlled Release, 102(2), 313-332. https://doi.org/10.1016/j.jconrel.2004.10.015
  • García-Márquez, E., Román-Guerrero, A., Pérez-Alonso, C., Cruz-Sosa, F. Jiménez-Alvarado, R., Vernon-Carter, E.J. (2012). Effect of solvent-temperature extraction conditions on the initial antioxidant activity and total phenolic content of muitle extracts and their decay upon storage at different pH. Revista Mexicana de Ingeniería Química, 11(1), 1-10.
  • Giada, M. D. L. R. (2013). Food phenolic compounds: main classes, sources and their antioxidant power. Oxidative stress and chronic degenerative diseases-A role for antioxidants. In: Oxidative Stress and Chronic Degenerative Diseases - A Role for Antioxidants, Morales-González, J.A. (Ed.). IntechOpen, pp., 87-112. https://doi.org/10.5772/51687
  • Gómez-Hoyos, G., Serpa-Guerra, A., Argel-Pérez, S., Velásquez-Cock, J., Villegas, M., Gañán, P., & Zuluaga-Gallego, R. (2022) An Edible oil enriched with lycopene from pink guava (Psidium guajava L.) using different mechanical treatments. Molecules, 27, 1038. https://doi.org/10.3390/molecules27031038
  • Guadarrama-Pérez, R., Márquez-Baños, V. E., De La Concha-Gómez, A. D., Valencia-López, J. J. ,Vengoechea-Pimienta, A., Martínez de Jesús, G. & Ramírez-Muñoz, J. Hydrodynamic performance of a ring-style high-shear impeller in newtonian and shear-thinning fluids. Chemical Engineering & Technology. 43(11), 2325-2335. https://doi.org/10.1002/ceat.201900569-
  • Hlaváč, P., Božiková, M., & Petrović, A. (2019). Selected physical properties assessment of sunflower and olive oils. Acta Technologica Agriculturae, 22(3), 86-91. https://doi.org/10. 2478/ata-2019- 0016
  • Jha, A.K., & Sit, N. (2022). Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends in Food Science and Technology, 119, 579-591. https://doi.org/10.1016/j.tifs.2021.11.019
  • Kaur, G.J., Orsat, V., & Singh, A. (2004). An overview of different homogenizers, their working mechanisms and impact on processing of fruits and vegetables. Critical Reviews in Food Science and Nutrition, 63(14), 2004-2017. https://doi.org/10.1080/10408398.2021.1969890
  • Khan, M.K., Abert-Vian, M., Fabiano-Tixier, A.-S., Dangles, O., & Chemat, F. (2010). Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chemistry, 119(2), 851-858. https://doi.org/10.1016/j.foodchem.2009.08.046
  • Kumar, K., Srivastav, S., & Sharanagat, V. S. (2021). Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics Sonochemistry, 70, 105325. http://doi.org/10.1016/j.ultsonch.2020.105325
  • Kupiec, M., Zbikowska, A., Marciniak-Lukasiak, K., & Kowalska, M. (2020). Rapeseed oil in new application: assessment of structure of oleogels based on their physicochemical properties and microscopic observations. Agriculture, 10(6), 211. https://doi.org/10.3390/agriculture10060211
  • Kwak, M., Roh, S., Yang, A., Lee, H. & Chang Y, K. (2019) High shear-assisted solvent extraction of lipid from wet biomass of Aurantio-chytrium sp. KRS10. Separation and Purification Technology, 227, 115666. https://doi.org/10.1016/j.seppur.2019.06.004
  • Li, Y., Bundeesomchok, K., Rakotomanomana, N., Fabiano-Tixier, A.-S., Bott, R., Wang, Y., & Chemat, F. (2019). Towards a zero-waste biorefinery using edible oils as solvents for the green extraction of volatile and non-volatile bioactive compounds from rosemary. Antioxidants, 8, 140. https://doi.org/10.3390/antiox8050140
  • Li, Y., Fabiano-Tixier, A.S., & Chemat, F. (2017). Vegetable oils as alternative solvents for green extraction of natural products. In Edible Oils: Extraction, Processing and Applications, Li, Y., Fabiano-Tixier, A.S., Chemat, F. (Eds.). CRC Press, Taylor & Francis: Boca Raton, USA, pp. 205-222.
  • Li, Y., Fabiano-Tixier, A.S., Ginies, C., & Chemat, F., (2014). Direct green extraction of volatile aroma compounds using vegetable oils as solvents. LWT-Food Science and Technology, 59(2), 724-731. https://doi.org/10.1016/j.lwt.2014.05.064
  • Martínez-de Jesús, G., Ramírez-Muñoz, J., García-Cortés, D., & Cota, L.G. (2018). Computational fluid dynamics study of flow induced by a grooved high-shear impeller in an unbaffled tank. Chemical Engineering & Technology, 41(3), 580-589. https://doi.org/10.1002/ceat.201700091
  • Monzón, L., Becerra, G., Aguirre, E., Rodríguez, G., & Villanueva, E. (2021). Ultrasound-assisted extraction of polyphenols from avocado residues: Modeling and optimization using response surface methodology and artificial neural networks. Scientia Agropecuaria, 12(1), 33-40. https://doi.org/10.17268/sci.agropecu.2021.004
  • Narine, S.S., & Marangoni, A.G. (1999). Mechanical and structural model of fractal networks of fat crystals at low deformations. Physical Review E, 60(6), 6991-7000. https://doi.org/10.1103/PhysRevE.60.6991
  • Naviglio, D., Trifuoggi, M., Varchetta, F., Nebbioso, V., Perrone, A., Avolio, L., De Martino, E., Montesano, D., & Gallo, M. (2023). Efficiency of recovery of the bioactive principles of plants by comparison between solid–liquid extraction in mixture and single-vegetable matrices via maceration and RSLDE. Plants, 12(16), 2900. https://doi.org/10.3390/plants12162900
  • Öğütcü, M., & Yılmaz, E. (2015) Characterization of hazelnut oil oleogels prepared with sunflower and carnauba waxes, International Journal of Food Properties, 18(8), 1741-1755,. https://doi.org/10.1080/10942912.2014.933352
  • Procopet, O., & Oroian, M. (2022). Amaranth seed polyphenol, fatty acid and amino acid profile. Applied Sciences, 12(4), 2181. https://doi.org/10.3390/app12042181
  • Quiroz-Reyes, C.N., Aguilar-Méndez, M.A., Ramírez-Ortíz, M.E., Ronquillo-De Jesús, E. (2013). Comparative study of ultrasound and maceration techniques for the extraction of polyphenols from cocoa beans (Theobroma cacao L.). Revista Mexicana de Ingeniería Química, 12(1), 11-18.
  • Rohilla, S., Mahanta, C.L., & Singha, S. (2023). Development of carotenoids enriched mayonnaise utilizing yellow tamarillo peel waste: an innovative approach for extracting carotenoids using high shear disperser and ultrasound as green extraction techniques. Waste and Biomass Valorization, 14, 3575-3587. https://doi.org/10.1007/s12649-023-02078-8
  • Sagar, N.A., Pareek, S., Sharma, S., Yahia, E.M., & Lobo, M.G. (2018). Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Comprehensive Reviews in Food Science and Food Safety, 17(3), 512-531. https://doi.org/10.1111/1541-4337.12330
  • Sena, B., Dhal, S., Sahu, D., Sarkar, P., Mohanty, B., Jarzębski, M., Wieruszewski, M., Behera, H., & Pal, K. (2022). Variations in microstructural and physicochemical properties of soy wax/soybean oil-derived oleogels using soy lecithin. Polymers, 14, 3928. https://doi.org/10.3390/polym14193928
  • Silva, L.M.R., de Sousa, P.H.M., de Sousa Sabino, L.B., do Prado, G.M., Torres, L.B.V., Maia, G.A., & Wilane de Figueiredo, R.N.M.P.S. (2020). Brazilian (North and Northeast) fruit by-products. In: Food Wastes and By‐products: Nutraceutical and Health Potential, Campos‐Vega, R., Dave Oomah, B., & Vergara‐Castañeda, H.A. (Eds.). John Wiley & Sons, New York, pp. 127-158. https://doi.org/10.1002/9781119534167.ch5
  • Singlenton, V., & Rossi, J. (1965). Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. American Journal Viticulture Enology, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
  • Toro-Vázquez J.F., Morales-Rueda J.A., Dibildox-Alvarado E., Charó-Alonso M., Alonzo-Macias M., & González-Chávez M.M. (2007) Thermal and textural properties of organogels developed by candelilla wax in safflower oil. Journal of American Oil Chemists Society, 84(11): 989-1000. https://doi.org/10.1007/s11746-007-1139-0
  • Valoppi, F., Haman, N., Ferrentino, G., & Scampicchio, M. (2020). Inhibition of lipid autoxidation by vegetable waxes. Food & Function, 11(7), 6215-6225. https://doi.org/10.1039/D0FO01022G
  • Xu, H., Fei, Q., Manickam, S., Li, D., Xiao, H., Han, Y., Show, P.L., Zhang, G., & Tao, Y. (2022). Mechanistic study of the solid-liquid extraction of phenolics from walnut pellicle fibers enhanced by ultrasound, microwave and mechanical agitation forces. Chemosphere, 309, 136451. https://doi.org/10.1016/j.chemosphere.2022.136451
  • Yara-Varón, E.,; Li, Y., Balcells, M., Canela-Garayoa, R., Fabiano-Tixier, A.-S., & Chemat, F. (2017). Vegetable oils as alternative solvents for green oleo-extraction, purification and formulation of food and natural products. Molecules, 22, 1474. https://doi.org/10.3390/molecules22091474
  • Yılmaz, E., Öğütcü, M., & Karagül Yüceer, Y. (2015) Physical properties, volatiles compositions and sensory descriptions of the aromatized hazelnut oil-wax organogels. Journal of Food Science, 80, S2035-S2044. https://doi.org/10.1111/1750-3841.12992
  • Yılmaz, E., Uslu, E.K., & Öz, C. (2021). Oleogels of some plant waxes: characterization and comparison with sunflower wax oleogel. Journal of American Oil Chemists Society, 98(6), 643-655. https://doi.org/10.1002/aocs.12490