Vol. 23, No. 2 (2024), Alim24240 https://doi.org/10.24275/rmiq/Alim24240


Spray freezing drying microencapsulation of krill oil enhances digestion and storage stability


 

Authors

C. A. Ortiz-Sánchez, E. Bonilla-Zavaleta, D. Cantú-Lozano, M. Jimenez-Fernández, G. Luna-Solano, M.P. Rascón-Díaz


Abstract

This study explores microencapsulation of krill oil (KO) by Spray-Freezing-Drying (SFD) as an effective process to protect KO from degradation due to environmental factors. Gum arabic (GA) and whey protein concentrate (WPC) were employed as wall materials and the resulting KO microcapsules were characterized in terms of color, astaxanthin content, water activity, antioxidant activity, microencapsulation efficiency and morphology. The bioaccessibility of both types of KO microcapsules was evaluated (by in vitro digestion), thermodynamic parameters were calculated through a moisture adsorption study for the prediction of the maximum stability of the microcapsules, and the kinetic stability of the astaxanthin content during the storage of the microcapsules was analyzed. The encapsulation efficiency of KO was around 96% in both treatments; however, a less porous structure and a slightly higher astaxanthin content were found in the microcapsules made with WPC. A significant increase in the bioaccessibility values of the microencapsulated KO compared to the free KO was found, however, no significant differences were found between the bioaccessibility, and antioxidant activity values obtained for both types of KO microcapsules. The moisture content of the monolayer was relatively low for both samples. It was found that the maximum stability occurred in the zone of minimum integral entropy with water activity values of 0.26 and 0.14 for KO microencapsulated with WPC and GA, respectively; this is confirmed by studying the effect of water activity on the degradation of astaxanthin content in both types of microcapsules stored at 35 °C.


Keywords

Microencapsulation, Spray-freeze-drying, Thermodynamic properties, Storage stability, Bioaccessibility.


References

  • Acosta-Domínguez, L., Salazar, R., Jiménez, M., and Azuara, E. (2021). Thermodynamic analysis as a useful tool to study the physical properties of sweet-potato starch films reinforced with alginate microparticles. Polymer Composites, 42(7), 3380–3390. https://doi.org/10.1002/pc.26065
  • Aghbashlo, M., Mobli, H., Madadlou, A., and Rafiee, S. (2013). Influence of Wall Material and Inlet Drying Air Temperature on the Microencapsulation of Fish Oil by Spray Drying. Food and Bioprocess Technology, 6(6), 1561–1569. https://doi.org/10.1007/s11947-012-0796-7
  • Ahn, S. H., Lim, S. J., Ryu, Y. M., Park, H. R., Suh, H. J., and Han, S. H. (2018). Absorption rate of krill oil and fish oil in blood and brain of rats. Lipids in Health and Disease, 17(1). https://doi.org/10.1186/s12944-018-0812-7
  • Arslan-Tontul, S. (2021). Moisture sorption isotherm and thermodynamic analysis of quinoa grains. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 57(3), 543–550. https://doi.org/10.1007/s00231-020-02978-8
  • Azhar, M. D., Abd Hashib, S., Ibrahim, U. K., Md Zaki, N. A., Ahmad Zamanhuri, N., and Abd Rahman, N. (2021). Moisture sorption isotherm and thermodynamic properties of Centella asiatica L. (CAL) powder. Chemical Engineering Communications, 208(4), 573–582. https://doi.org/10.1080/00986445.2020.1780213
  • Bakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A., and Liang, L. (2016). Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Comprehensive Reviews in Food Science and Food Safety, 15(1), 143–182. https://doi.org/10.1111/1541-4337.12179
  • Bakry, A. M., Huang, J., Zhai, Y., and Huang, Q. (2019). Myofibrillar protein with κ- or λ-carrageenans as novel shell materials for microencapsulation of tuna oil through complex coacervation. Food Hydrocolloids, 96, 43–53. https://doi.org/10.1016/j.foodhyd.2019.04.070
  • Bassijeh, A., Ansari, S., and Hosseini, S. M. H. (2020). Astaxanthin encapsulation in multilayer emulsions stabilized by complex coacervates of whey protein isolate and Persian gum and its use as a natural colorant in a model beverage. Food Research International, 137. https://doi.org/10.1016/j.foodres.2020.109689
  • Bonilla, E., Azuara, E., Beristain, C. I., and Vernon-Carter, E. J. (2010). Predicting suitable storage conditions for spray-dried microcapsules formed with different biopolymer matrices. Food Hydrocolloids, 24(6–7), 633–640. https://doi.org/10.1016/j.foodhyd.2010.02.010
  • Borrás-Enríquez, A. J., Gonzalez-Escobar, J. L., Delgado-Portales, R. E., Pérez-Barba, M. R., and Moscosa-Santillán, M. (2023). Screening of main factors in microencapsulation of two Bifidobacterium strains by spray drying. Revista Mexicana de Ingeniería Química, 22(3), 1–16. https://doi.org/10.24275/rmiq/Alim2319
  • Calderón-Castro, A., Aguilar-Palazuel, E., Camacho-Hernández, I. L., Vega-García, M. O., Zazueta-Morales, J. J., Ruiz-Armenta, X. A., and Fitch-Vargas, P. R. (2022). Effect of the storage relative humidity on the physicochemical properties of corn starch edible films obtained by a combination of extrusion process and casting technique. Revista Mexicana de Ingeniera Quimica, 21(3). https://doi.org/10.24275/rmiq/Alim2917
  • Caliskan, G., and Nur Dirim, S. (2013). The effects of the different drying conditions and the amounts of maltodextrin addition during spray drying of sumac extract. Food and Bioproducts Processing, 91(4), 539–548. https://doi.org/10.1016/j.fbp.2013.06.004
  • Cano-Higuita, D. M., Villa-Vélez, H. A., Telis-Romero, J., Váquiro, H. A., and Telis, V. R. N. (2015). Influence of alternative drying aids on water sorption of spray dried mango mix powders: A thermodynamic approach. Food and Bioproducts Processing, 93, 19–28. https://doi.org/10.1016/j.fbp.2013.10.005
  • Carvalho Lago, C., and Noreña, C. P. Z. (2015). Thermodynamic analysis of sorption isotherms of dehydrated yacon (Smallanthus sonchifolius) bagasse. Food Bioscience, 12, 26–33. https://doi.org/10.1016/j.fbio.2015.07.001
  • Delshadi, R., Bahrami, A., Tafti, A. G., Barba, F. J., and Williams, L. L. (2020). Micro and nano-encapsulation of vegetable and essential oils to develop functional food products with improved nutritional profiles. In Trends in Food Science and Technology (Vol. 104, pp. 72–83). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2020.07.004
  • Dolly, P., Anishaparvin, A., Joseph, G. S., and Anandharamakrishnan, C. (2011). Microencapsulation of Lactobacillus plantarum (mtcc 5422) by spray-freeze-drying method and evaluation of survival in simulated gastrointestinal conditions. Journal of Microencapsulation, 28(6), 568–574. https://doi.org/10.3109/02652048.2011.599435
  • Dutta, S., Moses, J. A., and Anandharamakrishnan, C. (2018). Modern frontiers and applications of spray-freeze-drying in design of food and biological supplements. Journal of Food Process Engineering, 41(8), e12881. https://doi.org/10.1111/jfpe.12881
  • Elik, A., Koçak Yanık, D., and Göğüş, F. (2021). A comparative study of encapsulation of carotenoid enriched-flaxseed oil and flaxseed oil by spray freeze-drying and spray drying techniques. LWT, 143, 111153. https://doi.org/10.1016/j.lwt.2021.111153
  • El-Messery, T. M., Altuntas, U., Altin, G., and Özçelik, B. (2020). The effect of spray-drying and freeze-drying on encapsulation efficiency, in vitro bioaccessibility and oxidative stability of krill oil nanoemulsion system. Food Hydrocolloids, 106, 105890. https://doi.org/10.1016/j.foodhyd.2020.105890
  • Escalona-García, L. A., Pedroza-Islas, R., Natividad, R., Rodríguez-Huezo, M. E., Carrillo-Navas, H., and Pérez-Alonso, C. (2016). Oxidation kinetics and thermodynamic analysis of chia oil microencapsulated in a whey protein concentrate-polysaccharide matrix. Journal of Food Engineering, 175, 93–103. https://doi.org/10.1016/j.jfoodeng.2015.12.009
  • Esquerdo, V. M., Monte, M. L., and Pinto, L. A. de A. (2019). Microstructures containing nanocapsules of unsaturated fatty acids with biopolymers: Characterization and thermodynamic properties. Journal of Food Engineering, 248, 28–35. https://doi.org/10.1016/j.jfoodeng.2018.12.015
  • Flores-Andrade, E., Bonilla, E., Luna-Solano, G., Marín, U. R., González-Arnao, M. T., and Rascón, M. P. (2019). Effect of the microstructure on the stability of red onion microcapsules. Drying Technology, 37(2), 223–231. https://doi.org/10.1080/07373937.2018.1449754
  • Foo, S. C., Khong, N. M. H., and Yusoff, F. Md. (2020). Physicochemical, microstructure and antioxidant properties of microalgae-derived fucoxanthin rich microcapsules. Algal Research, 51, 102061. https://doi.org/10.1016/j.algal.2020.102061
  • Fu, J., Song, L., Guan, J., Sun, C., Zhou, D., and Zhu, B. (2021). Encapsulation of Antarctic krill oil in yeast cell microcarriers: Evaluation of oxidative stability and in vitro release. Food Chemistry, 338, 128089. https://doi.org/10.1016/j.foodchem.2020.128089
  • Fuentes-Ortega, T., Martínez-Vargas, S. L., Cortés-Camargo, S., Guadarrama-Lezama, A. Y., Gallardo-Rivera, R., Baeza-Jimenéz, R., and Pérez-Alonso, C. (2017). EFFECTS OF THE PROCESS VARIABLES OF MICROENCAPSULATION SESAME OIL (Sesamum indica L.) BY SPRAY DRYING. Revista Mexicana de Ingeniería Química, 16(2), 477–490.
  • Gordon, B. A., Blazey, T. M., Su, Y., Hari-Raj, A., Dincer, A., Flores, S., Christensen, J., McDade, E., Wang, G., Xiong, C., Cairns, N. J., Hassenstab, J., Marcus, D. S., Fagan, A. M., Jack, C. R., Hornbeck, R. C., Paumier, K. L., Ances, B. M., Berman, S. B., … Benzinger, T. L. S. (2018). Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study. The Lancet Neurology, 17(3), 241–250. https://doi.org/10.1016/S1474-4422(18)30028-0
  • Grace, M. H., Hoskin, R. T., Hayes, M., Iorizzo, M., Kay, C., Ferruzzi, M. G., and Lila, M. A. (2022). Spray-dried and freeze-dried protein-spinach particles; effect of drying technique and protein type on the bioaccessibility of carotenoids, chlorophylls, and phenolics. Food Chemistry, 388, 133017. https://doi.org/10.1016/j.foodchem.2022.133017
  • Granado-Lorencio, F., Olmedilla-Alonso, B., Herrero-Barbudo, C., Blanco-Navarro, I., Pérez-Sacristán, B., and Blázquez-García, S. (2007). In vitro bioaccessibility of carotenoids and tocopherols from fruits and vegetables. Food Chemistry, 102(3), 641–648. https://doi.org/10.1016/j.foodchem.2006.05.043
  • Guadarrama-Lezama, A. Y., Jaramillo-Flores, E., Gutiérrez-López, G. F., Pérez-Alonso, C., Dorantes-Álvarez, L., and Alamilla-Beltrán, L. (2014). Effects of Storage Temperature and Water Activity on the Degradation of Carotenoids Contained in Microencapsulated Chili Extract. Drying Technology, 32(12), 1435–1447. https://doi.org/10.1080/07373937.2014.900502
  • Haq, M., and Chun, B.-S. (2018). Microencapsulation of omega-3 polyunsaturated fatty acids and astaxanthin-rich salmon oil using particles from gas saturated solutions (PGSS) process. LWT, 92, 523–530. https://doi.org/10.1016/j.lwt.2018.03.009
  • Hinnenkamp, C., Reineccius, G., and Ismail, B. P. (2021). Efficient encapsulation of fish oil: Capitalizing on the unique inherent characteristics of whey cream and hydrolyzed whey protein. Journal of Dairy Science, 104(6), 6472–6486. https://doi.org/10.3168/jds.2020-19880
  • Hoyos-Leyva, J. D., Bello-Pérez, L. A., Agama-Acevedo, E., and Alvarez-Ramirez, J. (2018). Thermodynamic analysis for assessing the physical stability of core materials microencapsulated in taro starch spherical aggregates. Carbohydrate Polymers, 197, 431–441. https://doi.org/10.1016/j.carbpol.2018.06.012
  • Hundre, S. Y., Karthik, P., and Anandharamakrishnan, C. (2015). Effect of whey protein isolate and β-cyclodextrin wall systems on stability of microencapsulated vanillin by spray–freeze drying method. Food Chemistry, 174, 16–24. https://doi.org/10.1016/j.foodchem.2014.11.016
  • Iglesias, H. A., Baeza, R., and Chirife, J. (2022). A Survey of Temperature Effects on GAB Monolayer in Foods and Minimum Integral Entropies of Sorption: a Review. Food and Bioprocess Technology, 15(4), 717–733. https://doi.org/10.1007/s11947-021-02740-w
  • Ishwarya, S. P., Anandharamakrishnan, C., and Stapley, A. G. F. (2015). Spray-freeze-drying: A novel process for the drying of foods and bioproducts. Trends in Food Science & Technology, 41(2), 161–181. https://doi.org/10.1016/j.tifs.2014.10.008
  • Isleroglu, H., Turker, I., Koc, B., and Tokatli, M. (2019). Microencapsulation of Microbial Transglutaminase by Ultrasonic Spray-Freeze Drying. Food and Bioprocess Technology, 12(12), 2004–2017. https://doi.org/10.1007/s11947-019-02353-4
  • Jimenez-Fernandez, M., Perez-Tirado, D. A., Peredo-Lovillo, A., and Luna-Solano, G. (2021). Physicochemical characteristics and survivability of lactobacillus paracasei encapsulated by a gum arabic-pectin mixture as wall material and added to fresh panela cheese. Revista Mexicana de Ingeniera Quimica, 20(3). https://doi.org/10.24275/rmiq/Alim2551
  • Joyce, P., Gustafsson, H., and Prestidge, C. A. (2018). Enhancing the lipase-mediated bioaccessibility of omega-3 fatty acids by microencapsulation of fish oil droplets within porous silica particles. Journal of Functional Foods, 47, 491–502. https://doi.org/10.1016/j.jff.2018.06.015
  • Karthik, P., and Anandharamakrishnan, C. (2013). Microencapsulation of Docosahexaenoic Acid by Spray-Freeze-Drying Method and Comparison of its Stability with Spray-Drying and Freeze-Drying Methods. Food and Bioprocess Technology, 6(10), 2780–2790. https://doi.org/10.1007/s11947-012-1024-1
  • Koc, B., Isleroglu, H., and Turker, I. (2022). Sorption behavior and storage stability of microencapsulated transglutaminase by ultrasonic spray–freeze–drying. Drying Technology, 40(2), 337–351. https://doi.org/10.1080/07373937.2020.1793771
  • Köhler, A., Sarkkinen, E., Tapola, N., Niskanen, T., and Bruheim, I. (2015). Bioavailability of fatty acids from krill oil, krill meal and fish oil in healthy subjects-a randomized, single-dose, cross-over trial. Lipids in Health and Disease, 14(1). https://doi.org/10.1186/s12944-015-0015-4
  • Kwantes, J. M., and Grundmann, O. (2015). A Brief Review of Krill Oil History, Research, and the Commercial Market. Journal of Dietary Supplements, 12(1), 23–35. https://doi.org/10.3109/19390211.2014.902000
  • Lara, B. R. B., Dias, M. V., Guimarães Junior, M., de Andrade, P. S., de Souza Nascimento, B., Ferreira, L. F., and Yoshida, M. I. (2020). Water sorption thermodynamic behavior of whey protein isolate/ polyvinyl alcohol blends for food packaging. Food Hydrocolloids, 103, 105710. https://doi.org/10.1016/j.foodhyd.2020.105710
  • Li, X., Wu, M., Xiao, M., Lu, S., Wang, Z., Yao, J., and Yang, L. (2019). Microencapsulated β-carotene preparation using different drying treatments. Journal of Zhejiang University-SCIENCE B, 20(11), 901–909. https://doi.org/10.1631/jzus.B1900157
  • Liu, X., Liu, J., Bi, J., Cao, F., Ding, Y., and Peng, J. (2019). Effects of high pressure homogenization on physical stability and carotenoid degradation kinetics of carrot beverage during storage. Journal of Food Engineering, 263, 63–69. https://doi.org/10.1016/j.jfoodeng.2019.05.034
  • Luna-Flores, M., Peña-Juarez, M. G., Bello-Ramírez, A. M., Telis-Romero, J., and Luna-Solano, G. (2023). Assessment of moisture adsorption and desorption isotherms, hysteresis phenomenon and thermodynamic analysis of habanero chili (Capsicum chinense) powder. Revista Mexicana de Ingeniera Quimica, 22(1). https://doi.org/10.24275/rmiq/Alim3044
  • Montero, P., Calvo, M. M., Gómez-Guillén, M. C., and Gómez-Estaca, J. (2016). Microcapsules containing astaxanthin from shrimp waste as potential food coloring and functional ingredient: Characterization, stability, and bioaccessibility. LWT, 70, 229–236. https://doi.org/10.1016/j.lwt.2016.02.040
  • Morales, E., Burgos-Díaz, C., Zúñiga, R. N., Jorkowski, J., Quilaqueo, M., and Rubilar, M. (2021). Effect of interfacial ionic layers on the food-grade o/w emulsion physical stability and astaxanthin retention during spray-drying. Foods, 10(2). https://doi.org/10.3390/foods10020312
  • Mosquera, L. H., Moraga, G., and Martínez-Navarrete, N. (2012). Critical water activity and critical water content of freeze-dried strawberry powder as affected by maltodextrin and arabic gum. Food Research International, 47(2), 201–206. https://doi.org/10.1016/j.foodres.2011.05.019
  • Nunes, R. V., and Rotstein, E. (1991). THERMODYNAMICS OF THE WATER-FOODSTUFF EQUILIBRIUM. Drying Technology, 9(1), 113–137. https://doi.org/10.1080/07373939108916643
  • Ordóñez-Santos, L. E., and Martínez-Girón, J. (2020). Thermal degradation kinetics of carotenoids, vitamin C and provitamin A in tree tomato juice. International Journal of Food Science & Technology, 55(1), 201–210. https://doi.org/10.1111/ijfs.14263
  • Osorio-Tellez, A., Pedroza-Islas, R., and Perez-Alonso, C. (2021). Prediction of storage stability parameters of spray dried powders of maltodextrins and corn syrups with different levels of hydrolysis (conversion). Revista Mexicana de Ingeniería Química, 20(2), 679–696. https://doi.org/10.24275/rmiq/Alim2136
  • Pang, Y., Duan, X., Ren, G., and Liu, W. (2017). Comparative Study on Different Drying Methods of Fish Oil Microcapsules. Journal of Food Quality, 2017, 1–7. https://doi.org/10.1155/2017/1612708
  • Parthasarathi, S., and Anandharamakrishnan, C. (2016). Enhancement of oral bioavailability of vitamin E by spray-freeze drying of whey protein microcapsules. Food and Bioproducts Processing, 100, 469–476. https://doi.org/10.1016/j.fbp.2016.09.004
  • Pascual-Pineda, L. A., Rascón, M. P., Quintanilla-Carvajal, M. X., Castillo-Morales, M., Marín, U. R., and Flores-Andrade, E. (2019). Effect of porous structure and spreading pressure on the storage stability of red onion microcapsules produced by spray freezing into liquid cryogenic and spray drying. Journal of Food Engineering, 245, 65–72. https://doi.org/10.1016/j.jfoodeng.2018.10.018
  • Paul, I. D., and Das, M. (2019). Moisture sorption isotherm and thermodynamic properties of jamun (Syzygium cumini L.) powder made from jamun pulp and seed. International Journal of Food Studies, 8(1), 111–126. https://doi.org/10.7455/ijfs/8.1.2019.a10
  • Pavón-García, M., Gallardo-Rivera, L. M. A. ;, Román-Guerrero, R. ;, Carrillo-Navas, A. ;, Rodríguez-Huezo, H. ;, Guadarrama-Lezama, M. E., and Pérez-Alonso, C. (2015). Moisture sorption properties and storage stability conditions of a nutraceutical system microencapsulated by spray drying. Revista Mexicana de Ingeniería Química, 14(3), 601–613. http://www.redalyc.org/articulo.oa?id=62043088004
  • Pérez-Alonso, C., Beristain, C. I., Lobato-Calleros, C., Rodríguez-Huezo, M. E., and Vernon-Carter, E. J. (2006). Thermodynamic analysis of the sorption isotherms of pure and blended carbohydrate polymers. Journal of Food Engineering, 77(4), 753–760. https://doi.org/10.1016/j.jfoodeng.2005.08.002
  • Plazola-Jacinto, C. P., Pérez-Pérez, V., Pereyra-Castro, S. C., Alamilla-Beltrán, L., and Ortiz-Moreno, A. (2019). Microencapsulation of biocompounds from avocado leaves oily extracts. Revista Mexicana de Ingeniera Quimica, 18(3), 1261–1276. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Plazola
  • Rahmani-Manglano, N. E., Tirado-Delgado, M., García-Moreno, P. J., Guadix, A., and Guadix, E. M. (2022). Influence of emulsifier type and encapsulating agent on the in vitro digestion of fish oil-loaded microcapsules produced by spray-drying. Food Chemistry, 392, 133257. https://doi.org/10.1016/j.foodchem.2022.133257
  • Rajam, R., and Anandharamakrishnan, C. (2015). Spray freeze drying method for microencapsulation of Lactobacillus plantarum. Journal of Food Engineering, 166, 95–103. https://doi.org/10.1016/j.jfoodeng.2015.05.029
  • Parthasarathi, S., and Anandharamakrishnan, C. (2016). Enhancement of oral bioavailability of vitamin E by spray-freeze drying of whey protein microcapsules. Food and Bioproducts Processing, 100, 469–476. https://doi.org/10.1016/j.fbp.2016.09.004
  • Santos, P. D. de F., Rubio, F. T. V., Balieiro, J. C. de C., Thomazini, M., and Favaro-Trindade, C. S. (2021). Application of spray drying for production of microparticles containing the carotenoid-rich tucumã oil (Astrocaryum vulgare Mart.). LWT, 143, 111106. https://doi.org/10.1016/j.lwt.2021.111106
  • Shi, L., Beamer, S. K., Yang, H., and Jaczynski, J. (2018). Micro-emulsification/encapsulation of krill oil by complex coacervation with krill protein isolated using isoelectric solubilization/precipitation. Food Chemistry, 244, 284–291. https://doi.org/10.1016/j.foodchem.2017.10.050
  • Song, J., Meng, L., Liu, C., Li, D., and Zhang, M. (2018). Changes in color and carotenoids of sweet corn juice during high-temperature heating. Cereal Chemistry, 95(3), 486–494. https://doi.org/10.1002/cche.10051
  • Song, J., Wei, Q., Wang, X., Li, D., Liu, C., Zhang, M., and Meng, L. (2018). Degradation of carotenoids in dehydrated pumpkins as affected by different storage conditions. Food Research International, 107, 130–136. https://doi.org/10.1016/j.foodres.2018.02.024
  • Spada, J. C., Noreña, C. P. Z., Marczak, L. D. F., and Tessaro, I. C. (2012). Study on the stability of β-carotene microencapsulated with pinhão (Araucaria angustifolia seeds) starch. Carbohydrate Polymers, 89(4), 1166–1173. https://doi.org/10.1016/j.carbpol.2012.03.090
  • Sun, X., Xu, Y., Zhao, L., Yan, H., Wang, S., and Wang, D. (2018). The stability and bioaccessibility of fucoxanthin in spray-dried microcapsules based on various biopolymers. RSC Advances, 8(61), 35139–35149. https://doi.org/10.1039/C8RA05621H
  • Tavares, L., and Noreña, C. P. Z. (2021). Characterization of the physicochemical, structural and thermodynamic properties of encapsulated garlic extract in multilayer wall materials. Powder Technology, 378, 388–399. https://doi.org/10.1016/j.powtec.2020.10.009
  • Tonon, R. V., Pedro, R. B., Grosso, C. R. F., and Hubinger, M. D. (2012). Microencapsulation of Flaxseed Oil by Spray Drying: Effect of Oil Load and Type of Wall Material. Drying Technology, 30(13), 1491–1501. https://doi.org/10.1080/07373937.2012.696227
  • Turker, I., and Isleroglu, H. (2021). Modeling of adsorption isotherm of <scp>freeze-dried</scp> mahaleb powder using artificial neural network and calculation of thermodynamic sorption properties. Journal of Food Process Engineering, 44(8). https://doi.org/10.1111/jfpe.13752
  • Vakarelova, M., Zanoni, F., Lardo, P., Rossin, G., Mainente, F., Chignola, R., Menin, A., Rizzi, C., and Zoccatelli, G. (2017). Production of stable food-grade microencapsulated astaxanthin by vibrating nozzle technology. Food Chemistry, 221, 289–295. https://doi.org/10.1016/j.foodchem.2016.10.085
  • Valerio, P. P., Frias, J. M., and Cren, E. C. (2021). Thermal degradation kinetics of carotenoids: Acrocomia aculeata oil in the context of nutraceutical food and bioprocess technology. Journal of Thermal Analysis and Calorimetry, 143(4), 2983–2994. https://doi.org/10.1007/s10973-020-09303-9
  • Velázquez-Gutiérrez, S. K., Alpizar-Reyes, E., Guadarrama-Lezama, A. Y., Báez-González, J. G., Alvarez-Ramírez, J., and Pérez-Alonso, C. (2021). Influence of the wall material on the moisture sorption properties and conditions of stability of sesame oil hydrogel beads by ionic gelation. LWT, 140, 110695. https://doi.org/10.1016/j.lwt.2020.110695
  • Venugopalan, V. K., Gopakumar, L. R., Kumaran, A. K., Chatterjee, N. S., Soman, V., Peeralil, S., Mathew, S., McClements, D. J., and Nagarajarao, R. C. (2021). Encapsulation and protection of omega-3-rich fish oils using food-grade delivery systems. In Foods (Vol. 10, Number 7). MDPI AG. https://doi.org/10.3390/foods10071566
  • Viganó, J., Azuara, E., Telis, V. R. N., Beristain, C. I., Jiménez, M., and Telis-Romero, J. (2012). Role of enthalpy and entropy in moisture sorption behavior of pineapple pulp powder produced by different drying methods. Thermochimica Acta, 528, 63–71. https://doi.org/10.1016/j.tca.2011.11.011
  • Wang, Z., Zhao, J., Zhang, T., Karrar, E., Chang, M., Liu, R., and Wang, X. (2022). Impact of interactions between whey protein isolate and different phospholipids on the properties of krill oil emulsions: A consideration for functional lipids efficient delivery. Food Hydrocolloids, 130, 107692. https://doi.org/10.1016/j.foodhyd.2022.107692
  • Weisser, H. (1985). Influence of Temperature on Sorption Equilibria. In Properties of Water in Foods (pp. 95–118). Springer Netherlands. https://doi.org/10.1007/978-94-009-5103-7_7
  • Xiao, Y., Huang, W., Li, D., Song, J., Liu, C., Wei, Q., Zhang, M., and Yang, Q. (2018). Thermal degradation kinetics of all-trans and cis-carotenoids in a light-induced model system. Food Chemistry, 239, 360–368. https://doi.org/10.1016/j.foodchem.2017.06.107
  • Xie, D., Gong, M., Wei, W., Jin, J., Wang, X., Wang, X., and Jin, Q. (2019). Antarctic Krill ( Euphausia superba ) Oil: A Comprehensive Review of Chemical Composition, Extraction Technologies, Health Benefits, and Current Applications. Comprehensive Reviews in Food Science and Food Safety, 18(2), 514–534. https://doi.org/10.1111/1541-4337.12427
  • Xu, L., yan, W., Zhang, M., Hong, X., Liu, Y., and Li, J. (2021). Application of ultrasound in stabilizing of Antarctic krill oil by modified chickpea protein isolate and ginseng saponin. LWT, 149, 111803. https://doi.org/10.1016/j.lwt.2021.111803
  • Yogendrarajah, P., Samapundo, S., Devlieghere, F., De Saeger, S., and De Meulenaer, B. (2015). Moisture sorption isotherms and thermodynamic properties of whole black peppercorns (Piper nigrum L.). LWT - Food Science and Technology, 64(1), 177–188. https://doi.org/10.1016/j.lwt.2015.05.045
  • Zhu, Y., Peng, Y., Wen, J., and Quek, S. Y. (2021). A Comparison of Microfluidic-Jet Spray Drying, Two-Fluid Nozzle Spray Drying, and Freeze-Drying for Co-Encapsulating β-Carotene, Lutein, Zeaxanthin, and Fish Oil. Foods, 10(7), 1522. https://doi.org/10.3390/foods10071522
  • Zungur Bastıoğlu, A., Koç, M., and Kaymak Ertekin, F. (2017). Moisture sorption isotherm of microencapsulated extra virgin olive oil by spray drying. Journal of Food Measurement and Characterization, 11(3), 1295–1305. https://doi.org/10.1007/s11694-017-9507-4