Vol. 23, No. 2 (2024), Bio24172 https://doi.org/10.24275/rmiq/Bio24172


Effect of surfactants on the removal of total petroleum hydrocarbons and microbial communities during bioremediation of a contaminated mining soil


 

Authors

S. Cisneros-de la Cueva, M.A. Martínez-Prado, J.A. Rojas-Contreras, J. López-Miranda


Abstract

The objective of this study was to evaluate the effect of ionic and nonionic surfactants on the biodegradation of total petroleum hydrocarbons (TPH) and the abundance and diversity of microbial communities. The experiments were conducted in two stages. In the first stage at microcosm level with Tween 80, Triton X-100, and SDS at 0, 1, 5, and 9 critical micelle concentrations (CMC) at 10, 20, and 30% moisture. The TPH removal rates, in decreasing order were 42.97 ± 0.70% for Tween 80 at 5 CMC and 30% moisture; 27.71 ± 0.62% for SDS at 1 CMC and 30% moisture; 27.33 ± 1.47% for Triton X-100, 5 CMC and 30% moisture; and 13.97 ± 0.38% the for negative control (no surfactant added) at 30% moisture. In the second stage, the best conditions of microcosm experiments were replicated in the biopile system. In this stage, the highest values of abundance and diversity of microbial communities and TPH degradation (49.89 ± 0.62%) were obtained for Tween 80 treatment with 5 CMC and 30% moisture. Consequently, the result shows that surfactant addition and moisture content influenced the microbial communities and TPH degradation suggesting that this method could be used to remove hydrocarbons from contaminated soils.


Keywords

Surfactants, bioremediation, bioavailability, metabolites, TPH.


References

  • AlKaabi, N., Al-Ghouti, M.A., Jaoua, S., and Zouari, N. (2020). Potential for native hydrocarbon-degrading bacteria to remediate highly weathered oil-polluted soils in Qatar through self-purification and bioaugmentation in biopiles. Biotechnology Reports 28, e00543. https://doi.org/10.1016/j.btre.2020.e00543
  • Bahmani, F., Ataei, S.A., and Mikaili, M. (2018). The effect of Moisture content variation on the bioremediation of hydrocarbon contaminated soils: modeling and experimental investigation. Journal of Environmental Analytical Chemistry 05. 2–6 https://doi.org/10.4172/2380-2391.1000236
  • Bidja, M.T., Chen, G., Chen, Z., Zheng, X., Li, S., Li, T., and Zhong, W. (2020). Microbial diversity changes and enrichment of potential petroleum hydrocarbon degraders in crude oil-, diesel-, and gasoline-contaminated soil. 3 Biotech 10, 1–15. https://doi.org/10.1007/s13205-019-2027-7
  • Borah, S.N., Sen, S., and Pakshirajan, K. (2021). Biosurfactants for enhanced bioavailability of micronutrients in soil: A Sustainable Approach. In: Biosurfactants for a Sustainable Future: Production and Applications in the Environment and Biomedicine, (H., Sarma and M.N.V., Prasad, eds.), Pp. 159–181. John Wiley & Sons.USA. https://doi. 10.1002/9781119671022.ch8
  • Brito, J., Valle, A., Almenglo, F., Ramírez, M., and Cantero, C. (2020). Characterization of eubacterial communities by denaturing gradient gel electrophoresis (DGGE) and next generation sequencing (NGS) in a desulfurization biotrickling filter using progressive changes of nitrate and nitrite as final electron acceptors. New Biotechnology 57, 67–75. https://doi.org/10.1016/j.nbt.2020.03.001
  • Burmeier, H. (1995). Bioremediation of soil. In: Methods in Applied Soil Microbiology and Biochemistry, (K. Alef and P. Nannipieri, eds.), Pp. 491–568. Elsevier, London. https://doi.org/10.1016/B978-012513840-6/50026-4
  • Cheng, M., Zeng, G., Huang, D., Yang, C., Lai, C., Zhang, C., and Liu, Y. (2018). Tween 80 surfactant-enhanced bioremediation: toward a solution to the soil contamination by hydrophobic organic compounds. Critical Reviews in Biotechnology 38, 17–30. https://doi.org/10.1080/07388551.2017.1311296
  • Cisneros, S., Hernández, C., Soto, N.O., Rojas, J.A., and López, J.L. (2016). Changes in bacterial populations during bioremediation of soil contaminated with petroleum hydrocarbons. Water, Air, and Soil Pollution 227, 4–12. https://doi.org/10.1007/s11270-016-2789-z
  • Dai C, Han Y, Duan Y, Lai, X., Fu, R., Liu, Shuguang L., Kah H., Tu, Y., and Zhou, L. (2022). Review on the contamination and remediation of polycyclic aromatic hydrocarbons (PAHs) in coastal soil and sediments. Environmental Research 205, 112423. https://doi.org/10.1016/j.envres.2021.112423
  • Das A. and Panda S.K. (2022). Molecular Tools for monitoring and validating bioremediation. In: Advances in bioremediation and phytoremediation for sustainable soil management, (J.A., Malik, ed.) Pp. 349–364. Springer Nature Switzerland AG https://doi.org/10.1007/978-3-030-89984-4_22
  • Dias, R.L., Ruberto, L., Calabró, A., Balbo, A. Lo, Del Panno, M.T., and Mac Cormack, W.P. (2015). Hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel-contaminated Antarctic soil. Polar Biology 38, 677–687. https://doi.org/10.1007/s00300-014-1630-7
  • González, A., Loera, O., Viniegra, G., and Sánchez, C. (2020). Induction of esterase activity during the degradation of high concentrations of the contaminant di(2-ethylhexyl) phthalate by Fusarium culmorum under liquid fermentation conditions. 3 Biotech 10, 1–6. https://doi.org/10.1007/s13205-020-02476-y
  • González, J.J., Valle, A., Ramírez, M., and Cantero, D. (2022). Characterization of bacterial and archaeal communities by DGGE and next generation sequencing (NGS) of nitrification bioreactors using two different intermediate landfill leachates as ammonium substrate. Waste Biomass Valor 13, 3753–3766. https://doi.org/10.1007/s12649-022-01759-0
  • Grace Liu, P.W., Chang, T.C., Chen, C.H., Wang, M.Z., and Hsu, H.W. (2013). Effects of soil organic matter and bacterial community shift on bioremediation of diesel-contaminated soil. International Biodeterioration & Biodegradation 85, 661–670. https://doi.org/10.1016/j.ibiod.2013.01.010
  • Haghollahi, A., Fazaelipoor, M.H., and Schaffie, M. (2016). The effect of soil type on the bioremediation of petroleum contaminated soils. Journal of Environmental Management 180, 197–201. https://doi.org/10.1016/j.jenvman.2016.05.038
  • Hedrick, D.B., Peacock, A., Stephen, J.R., Macnaughton, S.J., Brüggemann, J., and White, D.C. (2000). Measuring soil microbial community diversity using polar lipid fatty acid and denaturing gradient gel electrophoresis data. Journal of Microbiological Methods 41, 235–248. https://doi.org/10.1016/S0167-7012(00)00157-3
  • Hernández, N.M., López, J., Martínez, M.A., Cisneros, S., Rojas, J. A., and Medrano, H. (2021). Increase in total petroleum hydrocarbons removal rate in contaminated mining soil through bioaugmentation with autochthonous fungi during the slow bioremediation stage. Journal of Water Soil and Air Pollution 232, 1–15. https://doi.org/10.1007/s11270-021-05051-0
  • Huesemann, M.H., Hausmann, T.S., and Fortman, T.J. (2004). Does Bioavailability limit biodegradation? A comparison of hydrocarbon biodegradation and desorption rates in aged soils. Biodegradation 15, 261–274. https://doi.org/10.1023/B:BIOD.0000042996.03551.f4
  • Iturbe, R., Flores, C., Chavez, C., Bautista, G., and Torres, L.G. (2004). Remediation of contaminated soil using soil washing and biopile methodologies at a field level. Journal of Soils and Sediments 4, 1–8. https://doi.org/10.1007/BF02991055
  • Kaczorek, E., Urbanowicz, M., and Olszanowski, A. (2010). The influence of surfactants on cell surface properties of Aeromonas hydrophila during diesel oil biodegradation. Colloids and surfaces. B, Biointerfaces 81, 363–368. https://doi.org/10.1016/j.colsurfb.2010.07.039
  • Kunito, T., Hibino, S., Sumi, H., Sawada, K., Park, H.D., and Nagaoka, K. (2023). Bacterial and fungal community composition and community-level physiological profiles in forest soils. PLoS One 18, 1–15. https://doi.org/10.1371/journal.pone.0284817
  • Ling, H., Hou, J., Du, M., Zhang, Y., Liu, W., Christie, P., and Luo, Y. (2023). Surfactant-enhanced bioremediation of petroleum-contaminated soil and microbial community response: A field study. Chemosphere, 322,138225. https://doi.org/10.1016/j.chemosphere.2023.138225
  • Liu, P.F., Yang, Z.H., Chen, Y.L., Lo, K.H., and Kao, C.M. (2021). Remediation of weathered diesel-oil contaminated soils using biopile systems: An amendment selection and pilot-scale study. Science of The Total Environment 786, 147395. https://doi.org/10.1016/j.scitotenv.2021.147395
  • López J., Cisneros, S., Páez J.B., Rojas, J.A., and Soto, N.O. (2018). Changes in hydrocarbon composition and autochthonous microorganism growth of contaminated mining soil during bioremediation. Water, Air, & Soil Pollution 229, 165. https://doi.org/10.1007/s11270-018-3798-x
  • Mahjoubi, M., Cappello, S., Santisi, S., Najjari, A., Souissi, Y., and Cherif, A. (2021). Investigation of microbial community changes in petroleum polluted sediments during hydrocarbons degradation. Soil and Sediment Contamination: An International Journal 31, 1–20. https://doi.org/10.1080/15320383.2021.1920573
  • Margesin, R., and Schinner, F., (1998). Low-temperature bioremediation of a wastewater contaminated with anionic surfactants and fuel oil. Applied Microbiology Biotechnology 49, 482–486. https://doi.org/10.1007/s002530051202.
  • Menezes, F., de Oliveira Camargo, F.A., Okeke, B.C., and Frankenberger, W.T.J. (2005). Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiological research 160, 249–255. https://doi.org/10.1016/j.micres.2004.08.005
  • Micle, V., Sur, I.M., Criste, A., Senila, M., Levei, E., Marinescu, M., Cristorean, C., and Rogozan, G.C. (2018). Lab-scale experimental investigation concerning ex-situ bioremediation of petroleum hydrocarbons-contaminated soils. Soil and Sediment Contamination: An International Journal 27, 692–705. https://doi.org/10.1080/15320383.2018.1503229
  • Mohsen, N., Kareem Mohammed, P., and Kadhim, E. (2019). Bioremediation of petroleum hydrocarbons contaminated soil using biopiles system. Baghdad Science Journal 16. 185–193. https://doi.org/10.21123/bsj.2019.16.1(Suppl.).0185
  • Muyzer, G., and de Waal, E.C. (1994). Determination of the genetic diversity of microbial communities using DGGE analysis of PCR-amplified 16S rDNA. In: Microbial Mats, (Stal, L.J., and Caumette, P., eds), Pp. 207–2014. Springer, Berlin. https://doi.org/10.1007/978-3-642-78991-5_21
  • Nwankwegu, A.S., Zhang, L., Xie, D., Onwosi, C., Ouhammad, W.I., Odoh, C.K., Sam, K., and Idenyi, J.N. (2022). Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects. Journal Environmental Management 304, 114313. https://doi.org/10.1016/j.jenvman.2021.114313
  • Ossai, I.C., Ahmed, A., Hassan, A., and Hamid, F.S. (2020). Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environmental Technology & Innovation 17, 100526. https://doi.org/10.1016/j.eti.2019.100526
  • Shekhar, S.K., Godheja, J., and Modi, D.R. (2020). Molecular technologies for assessment of bioremediation and characterization of microbial communities at pollutant-contaminated sites. In: Bioremediation of Industrial Waste for Environmental Safety, (Bharagava, R., and Saxena, G., eds), Pp. 437–474. Springer, Singapore. https://doi.org/10.1007/978-981-13-3426-9_18
  • Skopp, J., Jawson, M., and Doran, J. (1990). Steady state aerobic microbial activity as a function of soil water Content. Soil Science Society of America Journal 54, 1619–1625. https://doi.org/10.2136/sssaj1990.03615995005400060018x
  • Vázquez,  E., Monzón, J., Martínez, H., and Campillo, B. (2022). Synthesis of non-ionic, cationic, and anionic surfactant from coconut oil for remediation of diesel contaminated soil. Revista Mexicana de Ingeniería Química 21, 1–18. https://doi.org/10.24275/rmiq/IA2776.
  • Velázquez, V.W., Gómez, S.A., Gutiérrez, M., Díaz, I., and Volke, T. (2022). Estimation of hydrocarbon sequestration in soils: influence of the chemical characteristics of humic substances. Revista Mexicana de Ingeniería Química 21, 1–19. https://doi.org/10.24275/rmiq/IA2660
  • Wang, J., and Wan, W. (2009). Kinetic models for fermentative hydrogen production: A review. International Journal of Hydrogen Energy 34, 3313–3323. https://doi.org/10.1016/j.ijhydene.2009.02.031
  • Wang, L., Li, F., Zhan, Y., and Zhu, L. (2016). Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. Environmental science and pollution research international, 23, 14451–14461. https://doi.org/10.1007/s11356-016-6630-4
  • Wang, Y, Wu S, Wang, H, Dong, Y., Li, X., Wang, S., Fan, H., and Zhuang, X. (2022). Optimization of conditions for a surfactant-producing strain and application to petroleum hydrocarbon-contaminated soil bioremediation. Colloids Surfaces B Biointerfaces 213, 112428. https://doi.org/10.1016/j.colsurfb.2022.112428
  • Yang, R., Zhang, G., Li, S., Moazeni, F., Li, Y., Wu, Y., Zhang, W., Chen, T., Liu, G., Zhang, B., and Wu, X. (2019). Degradation of crude oil by mixed cultures of bacteria isolated from the Qinghai-Tibet plateau and comparative analysis of metabolic mechanisms. Environmental Science and Pollution Research 26, 1834–1847. https://doi.org/10.1007/s11356-018-3718-z
  • Yesankar, P.J., Pal, M., Patil, A., and Qureshi, A. (2023). Microbial exopolymeric substances and biosurfactants as ‘bioavailability enhancers’ for polycyclic aromatic hydrocarbons biodegradation. International Journal of Environmental Science and Technology 20, 5823-5844. doi:10.1007/s13762-022-04068-0
  • Zarei, F., and Fazaelipoor, M.H. (2022). Effect of surfactants on the bioremediation of oily sludge from gasoil storage facilities. International Journal of Environmental Science and Technology 19, 5473-5480. doi:10.1007/s13762-021-03754-9
  • Zdarta, A., Smułek, W., Pacholak, A., Dudzińska-Bajorek, B., and Kaczorek, E. (2020). Surfactant addition in diesel oil degradation – how can it help the microbes? Journal of Environmental Health Science and Engineering 18, 677–686. https://doi.org/10.1007/s40201-020-00494-9
  • Žeradjanin, A., Avdalović, J., Lješević, M., Tesic, O., Miletic, S., Vrvic, M., and Beškoski, V. (2020). Evolution of humic acids during ex situ bioremediation on a pilot level: The added value of the microbial activity. Journal of the Serbian Chemical Society 85, 821–830. https://doi.org/10.2298/JSC190916131Z
  • Zhang, K., Wang, S., Guo, P., and Guo, S. (2021). Characteristics of organic carbon metabolism and bioremediation of petroleum-contaminated soil by a mesophilic aerobic biopile system. Chemosphere 264, 128521. https://doi.org/10.1016/j.chemosphere.2020.128521
  • Zhen, L., Hu, T., Lv, R., Wu, Y., Chang, F., Jia, F., and Gu, J. (2021). Succession of microbial communities and synergetic effects during bioremediation of petroleum hydrocarbon-contaminated soil enhanced by chemical oxidation. Journal of Hazardous Materials 410, 124869. https://doi.org/10.1016/j.jhazmat.2020.124869
  • Zucchi, M., Angiolini, L., Borin, S., Brusetti, L., Dietrich, N., Gigliotti, C., Barbieri, P., Sorlini, C., and Daffonchio, D. (2003). Response of bacterial community during bioremediation of an oil-polluted soil. Journal of Applied Microbiology 94, 248–257. https://doi.org/10.1046/j.1365-2672.2003.01826.x