Vol. 23, No. 2 (2024), Bio24204 https://doi.org/10.24275/rmiq/Bio24204


Evaluation of a vermicompost leachate as a mixotrophic culture medium for Scenedesmus acutiformis in a column photobioreactor with potential for biodiesel production


 

Authors

A.G. Zenteno-Carballo, Y.D.C. Pérez-Luna, J. Pantoja-Enríquez, R. Berrones-Hernández, S. Saldaña-Trinidad, E. G. Gómez-Vàzquez, M.A. Canseco-Pérez, Y. Sánchez-Roque


Abstract

Currently, efforts are being made to establish low-cost and easily scalable cultivation systems, through the use of alternative culture media is studied, such as leachates from the degradation of organic material with a variety of nutrients that can be assimilated by microalgae. Therefore, in this research, the lipid yield of Scenedesmus acutiformis were evaluated in a column photobioreactor of 3 liters for 30 days, using as a medium cultivate a vermicompost leachate at a total nitrogen concentration of 0.5 mgL-1, from the compost consisting residues of papaya, green grass, dry grass, almond leaves and bovine manure, with nitrogen concentrations of 0.23, 0.55, 0.93, 0.67 and 1.13%, respectively. Three concentrations (15, 25 and 50%) were prepared with two lighting levels (46.25 and 64.75 μmol photons m−2 s−1) and photoperiod 12/12, were evaluated.  The best treatment was leachate at 50%, produced 28.7% lipids. The profile of fatty acids showed linolenic acid as the most abundant (27.01%), followed by linoleic acid, palmitic acid, stearic acid, oleic acid, palmitoleic acid at concentrations of 17.05, 16.46, 14.70, 12.75 and 3.69%, respectively. The results obtained show the potential of vermicompost leachates standardized and characterized as a culture medium for the production of lipids.


Keywords

mixotrophic, leached, photobioreactor, photoperiod, biomass.


References

  • Albalate-Ramírez, A., Alcalá-Rodríguez, M.M., Miramontes-Martínez, L.R., Estrada-Baltazar, A., Galván-Arzola, U., López-Hernández, B.N., Rivas-García, P. (2023). The Importance of Substrate Formulation on the Hydrolysis Process in Anaerobic Digestion: A Numerical and Experimental Study. Revista Mexicana de Ingeniería Química 22, Bio239. https://doi.org/10.24275/rmiq/Bio239
  • AOAC (2000). O_cial Methods of Analysis. 16th ed. O_cial Method 928.08. Association of Analytical Chemistry, Arlington VA.
  • Assunção, J., and Malcata, F.X. (2020). Enclosed “non-conventional” photobioreactors for microalga production: A review. Algal Research 52, 102107. https://doi.org/10.1016/j.algal.2020.102107
  • Barros de Medeiros, V.P., da Costa, W.K.A., da Silva, R.T., Pimentel, T.C., Magnani, M. (2022). Microalgae as source of functional ingredients in new-generation foods: Challenges, technological effects, biological activity, and regulatory issues. Critical Reviews in Food Science and Nutrition 62, 4929-4950. https://doi.org/10.1080/10408398.2021.1879729
  • Beltrán-Rocha, J.C., Guajardo-Barbosa, C., Barceló-Quintal, I.D., López-Chuken, U.J. (2017). Biotreatment of secondary municipal effluents using microalgae: Effect of pH, nutrients (C, N and P) and CO2 enrichment. Revista de Biología Marina y Oceanografía 52, 417-427. http://dx.doi.org/10.4067/S0718-19572017000300001
  • Castillo, T., Ramos, D., García-Beltrán, T., Brito-Bazan, M., Galindo, E. (2021). Mixotrophic cultivation of microalgae: an alternative to produce high-value metabolites. Biochemical Engineering Journal 176, 108183. https://doi.org/10.1016/j.bej.2021.10818
  • Chen, W., Wang, J., Ren, Y., Chen, H., He, C., Wang, Q. (2021). Optimized production and enrichment of α-linolenic acid by Scenedesmus sp. HSJ296. Algal Research 60, 102505. https://doi.org/10.1016/j.algal.2021.102505
  • Condori, M.A.M., Gutierrez, M.E.V., Oviedo, R.D.N., Choix, F.J. (2023). Valorization of nutrients from fruit residues for the growth and lipid production of Chlorella sp.: A vision of the circular economy in Peru. Journal of Applied Phycology, 1-11. https://doi.org/10.1007/s10811-023-03153-2
  • Condori, M.A.M., Valencia, M.R.V., Fernández, F.G.A., Choix, F.J. (2023). Evaluation of sugarcane vinasse as a medium for enhanced Chlorella sp. growth, lipids production, and process integration. Journal of Applied Phycology 35, 581-591. https://doi.org/10.1007/s10811-022-02902-z
  • Converti, A., Casazza, A.A., Ortiz, E.Y., Perego, P., Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification 48, 1146-1151. https://doi.org/10.1016/j.cep.2009.03.006
  • Daneshvar, E., Ok, Y.S., Tavakoli, S., Sarkar, B., Shaheen, S.M., Hong, H., Bhatnagar, A. (2021). Insights into upstream processing of microalgae: A review. Bioresource technology 329, 124870. https://doi.org/10.1016/j.biortech.2021.124870
  • El-Sheekh, M., Abomohra, A.E.F., Eladel, H., Battah, M., Mohammed, S. (2018). Screening of different species of Scenedesmus isolated from Egyptian freshwater habitats for biodiesel production. Renewable Energy 129, 114-120. https://doi.org/10.1016/j.renene.2018.05.099
  • Grabska, N., Tamayo, A., Mazo, M.A., Pascual, L., Rubio. (2015) Evaluación del comportamiento de vidrios lixiviados como nutrientes de algas. Boletín de la Sociedad Española de Cerámica y Vidrio 54, 166-174. https://doi.org/10.1016/j.bsecv.2015.05.001
  • González-Camejo, J., Aparicio, S., Pachés, M., Borrás, L., Seco, A. (2022). Comprehensive assessment of the microalgae-nitrifying bacteria competition in microalgae-based wastewater treatment systems: Relevant factors, evaluation methods and control strategies. Algal Research 61, 102563. https://doi.org/10.1016/j.algal.2021.102563
  • Härtig, C. (2008). Rapid identification of fatty acid methyl esters using a multidimensional gas chromatographymass spectrometry database. Journal of Chromatography A 1177, 159-169. https://doi.org/10.1016/j.chroma.2007.10.089
  • Hsieh-Lo, M., Castillo, G., Ochoa-Becerra, M.A., Mojica, L. (2019). Phycocyanin and phycoerythrin: Strategies to improve production yield and chemical stability. Algal Research 42, 101600. https://doi.org/10.1016/j.algal.2019.101600
  • Korozi E, Kefalogianni I, Tsagou V, Chatzipavlidis I, Markou G, Karnaouri A. (2023). Evaluation of Growth and Production of High-Value-Added Metabolites in Scenedesmus quadricauda and Chlorella vulgaris Grown on Crude Glycerol under Heterotrophic and Mixotrophic Conditions Using Monochromatic Light-Emitting Diodes (LEDs). Foods 12, 3068. https://doi.org/10.3390/foods12163068
  • Kokkinos, N., Lazaridou, A., Stamatis, N., Orfanidis, S., Mitropoulos, A. C., Christoforidis, A., Nikolaou, N. (2015). Biodiesel Production from Selected Microalgae Strains and Determination of its Properties and Combustion Specific Characteristics. Journal of Engineering Science & Technology Review 8, 1-6.
  • Kumari, K., Samantaray, S., Sahoo, D. (2021). Nitrogen, phosphorus and high CO2 modulate photosynthesis, biomass and lipid production in the green alga Chlorella vulgarisPhotosynth Res 148, 17–32. https://link.springer.com/article/10.1007/s11120-021-00828-0
  • Li, Q.F., Trottier, N., Powers, W. (2015) Feeding reduced crude protein diets with crystalline amino acids supplementation reduce air gas emissions from housing. Journal of Animal Science 93, 721-730. https://doi.org/10.2527/jas.2014-7746
  • Li, T., Yang, F., Xu, J., Wu, H., Mo, J., Dai, L., Xiang, W. (2020). Evaluating differences in growth, photosynthetic efficiency, and transcriptome of Asterarcys sp. SCS-1881 under autotrophic, mixotrophic, and heterotrophic culturing conditions. Algal Research 45, 101753. https://doi.org/10.1016/j.algal.2019.101753
  • López-Alcántara, R., Borges-Cu, J.L., Ramírez-Benítez, J. E., Garza-Ortiz, A., Núñez-Oreza, L.A., Hernández-Vázquez, O.H. (2022). Importance of the C/N-ratio on biomass production and antimicrobial activity from marine bacteria Pseudoalteromonas sp. Revista Mexicana de Ingeniería Química 21, Bio2695-Bio2695. https://doi.org/10.24275/rmiq/Bio2695
  • Mandotra, S.K., Kumar, P., Suseela, M.R., Nayaka, S., Ramteke, P.W. (2016). Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities. Bioresource Technology 201, 222-229. https://doi.org/10.1016/j.biortech.2015.11.042
  • Maroneze, M.M., Queiroz, M.I. (2018). Microalgal production systems with highlights of bioenergy production. Energy From Microalgae, 5-34. https://link.springer.com/chapter/10.1007/978-3-319-69093-3_2
  • Maroneze, M. M., Herrera, C.A.M., Jiménez, A. M. (2011). Insights into microalgae culture systems: A critical review. BioTecnología 25, 11-34.
  • Mathimani, T., Sekar, M., Shanmugam, S., Sabir, J.S., Chi, N.T.L., Pugazhendhi, A. (2020). Relative abundance of lipid types among Chlorella sp. and Scenedesmus sp. and ameliorating homogeneous acid catalytic conditions using central composite design (CCD) for maximizing fatty acid methyl ester yield. Science of The Total Environment 771, 144700. https://doi.org/10.1016/j.scitotenv.2020.144700
  • May-Cua, E.R., Toledano-Thompson, T., Alzate-Gaviria, L.M., Barahona-Perez, L.F. (2019). A cylindrical-conical photobioreactor and a sludge drying bed as an efficient system for cultivation of the green microalgae Coelastrum sp. and dry biomass recovery. Revista Mexicana de Ingeniería Química 18, 1-11. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/May
  • Meng, T.K., Kassim, M.A., Cheirsilp, B. (2020). Mixotrophic cultivation: biomass and biochemical biosynthesis for biofuel production. In Microalgae cultivation for biofuels production. Academic Press, 51-67. https://doi.org/10.1016/B978-0-12-817536-1.00004-7
  • Momeni, M.M., Kahforoushan, D., Abbasi, F., Ghanbarian, S. (2018). Using Chitosan/CHPATC as coagulant to remove color and turbidity of industrial wastewater: Optimization through RSM design. Journal of Environmental Economics and Management 211, 347-355. https://doi.org/10.1016/j.jenvman.2018.01.031
  • NMX-FF-109-SCFI-2007.Vermicompost (Worm casting) - Specifications and test methods. Available at: http://www.economia-nmx.gob.mx/normas/nmx/2007/nmx-ff-109-scfi-2008.pdf. Accessed: November 11, 2023
  • NOM-021-RECNAT-2000. Soil fertility, salinity and classification specifications, studies, sampling and análisis. Available at: http://www.ordenjuridico.gob.mx/Documentos/Federal/wo69255.pdf. Accessed: November 11, 2023
  • Patel, A. K., Choi, Y.Y., Sim, S.J. (2020). Emerging prospects of mixotrophic microalgae: Way forward to sustainable bioprocess for environmental remediation and cost-effective biofuels. Bioresource Technology 300, 122741. https://doi.org/10.1016/j.biortech.2020.122741
  • Perez-Garcia, O., and Bashan, Y. (2015). Microalgal heterotrophic and mixotrophic culturing for bio-refining: from metabolic routes to techno-economics. (2015). Algal Biorefineries, Products and Refinery Design 2, 61-131. https://link.springer.com/chapter/10.1007/978-3-319-20200-6_3
  • Rajendran, L., Nagarajan, N. G., & Karuppan, M. (2020). Enhanced biomass and lutein production by mixotrophic cultivation of Scenedesmus sp. using crude glycerol in an airlift photobioreactor. Biochemical Engineering Journal 161, 107684. DOI: https://doi.org/10.1016/j.bej.2020.107684
  • Robles-Heredia, J. C., Sacramento-Rivero, J. C., Ruiz-Marín, A., Baz-Rodríguez, S., Canedo-López, Y., & Narváez-García, A. (2016). Evaluación de crecimiento celular, remoción de nitrógeno y producción de lípidos por Chlorella vulgaris a diferentes condiciones de aireación en dos tipos de fotobiorreactores anulares. Revista Mexicana de Ingeniería Química, 15(2), 361-377.
  • Sánchez-Roque, Y., Luna, Y.P., Acosta, J.M., Vázquez, N.F., Sebastian, J.P., & Hernández, R.B. (2020). Optimization for the production of Verrucodesmus verrucosus biomass through crops in autotrophic and mixotrophic conditions with potential for the production of biodiesel. Revista Mexicana de Ingeniería Química 19, 133-147.
  • Serejo, M.L., Morgado, M.F., García, D., González-Sánchez, A., Méndez-Acosta, H.O., Toledo-Cervantes, A. (2020). Environmental resilience by microalgae. In Microalgae Cultivation for Biofuels Production. Academic Press 19, 293-315. https://doi.org/10.1016/B978-0-12-817536-1.00019-9
  • Shamim, M.I.A., Dijkstra, F.A., Abuyusuf, M., Hossain, A.I. (2015). Synergistic e
    ects of biochar and NPK Fertilizer on soybean yield in an alkaline soil. Pedosphere 25, 713-719. https:/doi.org/10.1016/S1002-0160(15)30052-7
  • Sheath, R.G., Wehr, J.D. (2003). Freshwater Algae of North America: Ecology and Classification. Academic Press.
  • Sim, S.J., Joun, J., Hong, M.E., Patel, A.K. (2019). Split mixotrophy: A novel cultivation strategy to enhance the mixotrophic biomass and lipid yields of Chlorella protothecoides. Bioresource technology 291, 121820. https://doi.org/10.1016/j.biortech.2019.121820
  • Sirohi, R., Pandey, A.K., Ranganathan, P., Singh, S., Udayan, A., Awasthi, M.K., Sim, S.J. (2022). Design and applications of photobioreactors-A review. Bioresource Technology 349, 126858. https://doi.org/10.1016/j.biortech.2022.126858
  • Sieracki, C.K., Sieracki, M.E., Yentsch, C.S. (1998). An imaging-in-flow system for automated analysis of marine microplankton. Marine Ecology Progress Series 168, 285-296.
  • Soto-León, S., Zazueta-Patrón, I.E., Piña-Valdez, P., Nieves-Soto, M., Reyes-Moreno, C., Contreras-Andrade, I. (2014). Extracción de lípidos de Tetraselmis suecica: Proceso asistido por ultrasonido y solventes. Revista Mexicana de Ingeniería Química 13, 723–737.
  • Tripathi, S., Arora, N., Pruthi, V., Poluri, K.M. (2021). Elucidating the bioremediation mechanism of Scenedesmus sp. IITRIND2 under cadmium stress. Chemosphere 283, 131196. https://doi.org/10.1016/j.chemosphere.2021.131196
  • Vignesh, P., Kumar, A.P., Ganesh, N.S., Jayaseelan, V., Sudhakar, K. (2021). A review of conventional and renewable biodiesel production. Chinese Journal of Chemical Engineering 40, 1-17. https://doi.org/10.1016/j.cjche.2020.10.025
  • Volgusheva, A., Todorenko, D., Baizhumanov, A., Chivkunova, O., Solovchenko, A., & Antal, T. (2022). Cadmium-and chromium-induced damage and acclimation mechanisms in Scenedesmus quadricauda and Chlorella sorokiniana. Journal of Applied Phycology 34, 1435-1446. https://link.springer.com/article/10.1007/s10811-022-02747-6
  • Waqar, R., Kaleem, M., Iqbal, J., Minhas, L.A., Haris, M., Chalgham, W., Mumtaz, A.S. (2023). Kinetic and Equilibrium Studies on the Adsorption of Lead and Cadmium from Aqueous Solution Using Scenedesmus sp. Sustainability 15, 6024. https://doi.org/10.3390/su15076024
  • Wibisono, Y., Agung Nugroho, W., Akbar Devianto, L., Adi Sulianto, A., Roil, M. (2019). Microalgae in Food-Energy-Water Nexus: A Review on Progress of Forward Osmosis Applications. Membrane 9, 166. https://doi.org/10.3390/membranes9120166
  • Wood A, Everroad R, Wingard L. (2005). Measuring growth rates in microalgal cultures. In: Andersen R (edAlgal culturing techniques), Pp 269-286. Elsevier, Academic Press.
  • Xin, L., Hong-Ying, H., Ke, G., Ying-Xue, S. (2010).  Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus spBioresource Technology 101, 5494-5500. https://doi.org/10.1016/j.biortech.2010.02.016
  • Yang, F., Long, L., Sun, X., Wu, H., Li, T., Xiang, W. (2014). Optimization of medium using response surface methodology for lipid production by Scenedesmus sp. Marine drugs 12, 1245-1257. https://doi.org/10.3390/md12031245
  • Ye, S., Gao, L., Zhao, J., An, M., Wu, H., Li, M. (2020).  Simultaneous wastewater treatment and lipid production by Scenedesmus sp. HXY2. Bioresource Technology, 302, 122903. https://doi.org/10.1016/j.biortech.2020.122903
  • Yousuf, A. (2020). Fundamentals of Microalgae Cultivation. Microalgae Cultivation. Microalgae Cultivation for Biofuels Production 1, 1–9.  https://doi.org/10.1016/B978-0-12-817536-1.00001-1
  • Zhan, J., Rong, J., Wang, Q. (2017). Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. International journal of hydrogen energy 42, 8505-8517. https://doi.org/10.1016/j.ijhydene.2016.12.021
  • Zhao, Y., Song, X., Yu, L., Han, B., Li, T., Yu, X. (2019). Influence of cadmium stress on the lipid production and cadmium bioresorption by Monoraphidium sp. QLY-1. Energy Conversion and Management, 188, 76-85. https://doi.org/10.1016/j.enconman.2019.03.041