Vol. 23, No. 2 (2024), Bio24209 https://doi.org/10.24275/rmiq/Bio24209


Algae as nutritional and bioactive food ingredients


 

Authors

G. Díaz-Godínez, K. Peña-Solis, G. Díaz-Domínguez


Abstract

Humanity currently presents many challenges, among which efficient food production is one of the greatest, which is why research is carried out to find unconventional protein sources. A potential alternative is algae (unicellular or multicellular), which generally develop in aquatic environments, whether in fresh or salt water, with the characteristic that they carry out photosynthesis. These organisms have various colors due to their pigments such as chlorophyll, phycocyanin, carotene, fucoxanthin, among others. Although the consumption of algae is very old, special attention has currently been paid to their nutritional quality since they show a high concentration of minerals, vitamins and proteins with low caloric and lipid content, and have also shown antibacterial, antifungal, antiviral, antioxidant, antihypertensive, immunomodulatory, anticancer, hepatoprotective, anticoagulant activities, among others, which is why they are considered functional or nutraceuticals foods. Algae have been present in the cuisine of many cultures. New food products have also been developed where algae or some of its components are used as ingredients for their functional and/or nutraceutical properties. In this review, some nutritional and functional properties of some algae are mentioned, as well as research where foods added either with algae or some of their components have been developed.


Keywords

Algae, functional foods, microalgae, nutraceutical foods, seaweeds.


References

  • Achour, H.Y., Doumandji, A., Sadi, S. and Saadi, S. (2014). Evaluation of nutritional and sensory properties of bread enriched with Spirulina. Annals Food Science and Technology 15, 270–275. https://afst.valahia.ro/wp-content/uploads/2022/09/s01_w08_full_2014.pdf
  • Agregán, R., Franco, D., Carballo, J., Tomasevic, I., Barba, F.J., Gómez, B., Muchenje, V. and Lorenzo, J.M. (2018). Shelf life study of healthy pork liver pâté with added seaweed extracts from Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata. Food Research International 112, 400–411. https://doi.org/10.1016/j.foodres.2018.06.063
  • Agustini, T.W., Maruf, W.F., Widayat, A., Suzery, M., Hadiyanto, L. and Benjakul, S. (2016). Application of Spirulina platensis on ice cream and soft cheese with respect to their nutritional and sensory perspectives. Jurnal Teknologi 78, 245–251. https://doi.org/10.11113/jt.v78.8216
  • Ainsa, A., Honrado, A., Marquina, P., Beltrán, J.A. and Calanche, J. (2022). Influence of seaweeds on the quality of pasta as a plant-based innovative food. Foods 11, 2525. https://doi.org/10.3390/foods11162525
  • Ak, B., Avsaroglu, E., Isik, O., Özyurt, G., Kafkas, E. and Etyemez, M. (2016). Nutritional and physicochemical characteristics of bread enriched with microalgae Spirulina platensis. International Journal of Engineering Research and Application 6, 30–38. https://www.ijera.com/papers/Vol6_issue12/Part-4/E612043038.pdf
  • Al-Saif, S.S.A.L., Abdel-Raouf, N., El-Wazanani, H.A. and Aref, I.A. (2014). Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia. Saudi Journal of Biological Sciences 21, 57–64. https://doi.org/10.1016/j.sjbs.2013.06.001
  • Bagchi, D. (2006). Nutraceuticals and functional foods regulations in the United States and around the world. Toxicology 221, 1–3. https://doi.org/10.1016/j.tox.2006.01.001
  • Baky, A.E., Baroty, E. and Ibrahem, G.S. (2015). Functional characters evaluation of biscuits sublimated with pure phycocyanin isolated from Spirulina and Spirulina biomass. Nutrición Hospitalaria 32, 231–241. https://doi.org/10.3305/nh.2015.32.1.8804
  • Balasubramaniam, V., Gunasegavan, R.D.N., Mustar, S., Lee, J.C. and Mohd Noh, M.F. (2021). Isolation of industrial important bioactive compounds from microalgae. Molecules 26, 943. https://doi.org/10.3390/molecules26040943
  • Barbarino, E. and Lourenço, S.O. (2005). An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. Journal of Applied Phycology 17, 447–460. https://doi.org/10.1007/s10811-005-1641-4
  • Barkallah, M., Dammak, M., Louati, I., Hentati, F., Hadrich, B., Mechichi, T., Ayadi, M.A., Fendri, I., Attia, H. and Abdelkafi, S. (2017). Effect of Spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage. LWT-Food Science and Technology 84, 323–330. https://doi.org/10.1016/j.lwt.2017.05.071
  • Batista de Oliveira, T.T., Miranda dos Reis, I., Bastos de Souza, M., da Silva Bispo, E., Fonseca Maciel, L., Druzian, J.I., Lordelo Guimarães Tavares, P.P., de Oliveira Cerqueira, A., dos Santos Boa Morte, E., Abreu Glória, M.B., Lima Deus, V. and Radomille de Santana, L.R. (2021). Microencapsulation of Spirulina sp. LEB-18 and its incorporation in chocolate milk: Properties and functional potential. LWT-Food Science and Technology 148, 111674. https://doi.org/10.1016/j.lwt.2021.111674
  • Batista, A.P., Gouveia, L., Nunes, M.C., Franco, J.M. and Raymundo, A. (2008). Microalgae biomass as a novel functional ingredient in mixed gel systems. In Gums and Stabilisers for the Food Industry, (P.A. Williams and G.O. Phillips, eds.) 14, Pp. 487–494. Cambridge: RSC Publishing, UK.
  • Batista, A.P., Niccolai, A., Bursic, I., Sousa, I., Raymundo, A., Rodolfi, L., Biondi, N. and Tredici, M.R. (2019). Microalgae as functional ingredients in savory food products: Application to wheat crackers. Foods 8, 611. https://doi.org/10.3390/foods8120611
  • Batista, A.P., Niccolai, A., Fradinho, P., Fragoso, S., Bursic, I., Rodolfi, L., Biondi, N., Tredici, M.R., Sousa, I. and Raymundo, A. (2017). Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Research 26, 161–171. https://doi.org/10.1016/j.algal.2017.07.017
  • Batista, A.P., Nunes, M. C., Fradinho, P., Gouveia, L., Sousa, I., Raymundo, A. and Franco, J.M. (2012). Novel foods with microalgal ingredients–Effect of gel setting conditions on the linear viscoelasticity of Spirulina and Haematococcus gels. Journal of Food Engineering 110, 182–189. https://doi.org/10.1016/j.jfoodeng.2011.05.044
  • Batista, A.P., Nunes, M.C., Raymundo, A., Gouveia, L., Sousa, I., Cordobés, F., Guerrero, A. and Franco, J.M. (2011). Microalgae biomass interaction in biopolymer gelled systems. Food Hydrocolloids 25, 817–825. https://doi.org/10.1016/j.foodhyd.2010.09.018
  • Bayat-Tork, M., Vazifedoost, M., Hesarinejad, M.A., Didar, Z. and Shafafi Zenoozian, M. (2022). Fabrication of dragee containing Spirulina platensis microalgae to enrich corn snack and evaluate its sensorial, physicochemical and nutritional properties. Foods 11, 1909. https://doi.org/10.3390/foods11131909
  • Bazarnova, J., Nilova, L., Trukhina, E., Bernavskaya, M., Smyatskaya, Y. and Aktar, T. (2021). Use of microalgae biomass for fortification of food products from grain. Foods 10, 3018. https://doi.org/10.3390/foods10123018
  • Bchir, B., Felfoul, I., Bouaziz, M.A., Gharred, T., Yaich, H. and Noumi, E. (2019). Investigation of physicochemical, nutritional, textural, and sensory properties of yoghurt fortified with fresh and dried Spirulina (Arthrospira platensis). International Food Research Journal 26, 1565–1576. http://www.ifrj.upm.edu.my/26%20(05)%202019/17.pdf
  • Becker, E.W. (2007). Micro-algae as a source of protein. Biotechnology Advances 25, 207–210. https://doi.org/10.1016/j.biotechadv.2006.11.002
  • Beheshtipour, H., Mortazavian, A.M., Mohammadi, R., Sohrabvandi, S. and Khosravi-Darani, K. (2013). Supplementation of Spirulina platensis and Chlorella vulgaris Algae into Probiotic Fermented Milks. Comprehensive Reviews in Food Science and Food Safety 12, 144–154. https://doi.org/10.1111/1541-4337.12004
  • Bellou, S., Baeshen, M.N., Elazzazy, A.M., Aggeli, D., Sayegh, F. and Aggelis, G. (2014). Microalgal lipids biochemistry and biotechnological perspectives. Biotechnology Advances 32, 1476–1493. https://doi.org/10.1016/j.biotechadv.2014.10.003
  • Biris-Dorhoi, E.-S., Michiu, D., Pop, C.R., Rotar, A.M., Tofana, M., Pop, O.L., Socaci, S. A. and Farcas, A.C. (2020). Macroalgae-A sustainable source of chemical compounds with biological activities. Nutrients 12, 3085. https://doi.org/10.3390/nu12103085
  • Bokesch, H.R., O’Keefe, B.R., McKee, T.C., Pannell, L.K., Patterson, G.M.L., Gardella, R. S., Sowder, R.C., Turpin, J., Watson, K., Buckheit, R.W. and Boyd, M.R. (2003). A potent novel anti-HIV protein from the cultured Cyanobacterium Scytonema varium. Biochemistry 42, 2578–2584. https://doi.org/10.1021/bi0205698
  • Bosnea, L., Terpou, A., Pappa, E., Kondyli, E., Mataragas, M., Markou, G. and Katsaros, G. (2020). Incorporation of Spirulina platensis on traditional Greek soft cheese with respect to its nutritional and sensory perspectives. 70, 99. The 1st International Electronic Conference on Food Science and Functional Foods.
  • Boukid, F. and Castellari, M. (2021). Food and beverages containing algae and derived ingredients launched in the market from 2015 to 2019: A front-of-pack labeling perspective with a special focus on Spain. Foods 10, 173. https://doi.org/10.3390/foods10010173
  • Boukid, F., Comaposada, J., Ribas-Agustí, A. and Castellari, M. (2021). Development of high-protein vegetable creams by using single-cell ingredients from some microalgae species. Foods 10, 2550. https://doi.org/10.3390/foods10112550
  • Boyd, M.R., Gustafson, K.R., McMahon, J.B., Shoemaker, R.H., O’Keefe, B.R., Mori, T., Gulakowski, R.J., Wu, L., Rivera, M.I., Laurencot, C.M., Currens, M.J., Cardellina, J.H., Buckheit, R.W., Nara, P.L., Pannell, L.K., Sowder, R.C. and Henderson, L.E. (1997). Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrobial Agents and Chemotherapy 41, 1521–1530. https://doi.org/10.1128/aac.41.7.1521
  • Brown, M.R. (1991). The amino-acid and sugar composition of 16 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology 145, 79–99. https://doi.org/10.1016/0022-0981(91)90007-j
  • Cha, K.H., Koo, S.Y. and Lee, D.-U. (2008). Antiproliferative Effects of Carotenoids Extracted from Chlorella ellipsoidea and Chlorella vulgaris on Human Colon Cancer Cells. Journal of Agricultural and Food Chemistry 56, 10521–10526. https://doi.org/10.1021/jf802111x
  • Chacón-Lee, T.L. and González-Mariño, G.E. (2010). Microalgae for “healthy” foods—possibilities and challenges. Comprehensive Reviews in Food Science and Food Safety 9, 655–675. https://doi.org/10.1111/j.1541-4337.2010.00132.x
  • Chaiklahan, R., Chirasuwan, N., Loha, V. and Bunnag, B. (2008). ScienceAsia 34, 299-305. https://doi.org/10.2306/scienceasia1513-1874.2008.34.299
  • Chakraborty, K. and Paulraj, R. (2010). Sesquiterpenoids with free-radical-scavenging properties from marine macroalga Ulva fasciata Delile. Food Chemistry 122, 31–41. https://doi.org/10.1016/j.foodchem.2010.02.012
  • Chakraborty, S. and Santra, S.C. (2008). Biochemical composition of eight benthic algae collected from Sunderban. Indian Journal of Marine Sciences 37, 329–332. https://www.researchgate.net/publication/216590106_Biochemical_composition_of_eight_benthic_alge_collected_from_Sunderban
  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances 25, 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  • Cho, E.J., Nam, E.S. and Park, S.I. (2004). Keeping quality and sensory properties of drinkable yoghurt with added Chlorella extract. The Korean Journal of Food Nutrition 17, 128–137. http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=HGSPB1_2004_v17n2_128
  • Choi, K.J., Nakhost, Z., Barzana, E. and Karel, M. (1987). Lipid content and fatty acid composition of green algae Scenedesmus obliquus grown in a constant cell density apparatus. Food Biotechnology 1, 117–128. https://doi.org/10.1080/08905438709549660
  • Choudhary, B., Chauhan, O.P. and Mishra, A. (2021). Edible seaweeds: A potential novel source of bioactive metabolites and nutraceuticals with human health benefits. Frontiers in marine science 8, 740054. https://doi.org/10.3389/fmars.2021.740054
  • Ciferri, O. (1983). Spirulina, the edible microorganism. Microbiological Reviews 47, 551–578. https://doi.org/10.1128/mr.47.4.551-578.1983
  • Coleman, B., Van Poucke, C., Dewitte, B., Ruttens, A., Moerdijk-Poortvliet, T., Latsos, C., De Reu, K., Blommaert, L., Duquenne, B., Timmermans, K., van Houcke, J., Muylaert, K. and Robbens, J. (2022). Potential of microalgae as flavoring agents for plant-based seafood alternatives. Future Foods 5, 100139. https://doi.org/10.1016/j.fufo.2022.100139
  • Costa, L.S., Fidelis, G.P., Telles, C.B.S., Dantas-Santos, N., Camara, R.B.G., Cordeiro, S.L., Costa, M.S.S.P., Almeida-Lima, J., Melo-Silveira, R.F., Oliveira, R.M., Albuquerque, I.R.L., Andrade, G.P.V. and Rocha, H.A.O. (2011). Antioxidant and Antiproliferative Activities of Heterofucans from the Seaweed Sargassum filipendula. Marine Drugs 9, 952–966. https://doi.org/10.3390/md9060952
  • Cox, S. and Abu-Ghannam, N. (2013). Enhancement of the phytochemical and fibre content of beef patties with Himanthalia elongate seaweed. International Journal of Food Science and Technology 48, 2239–2249. https://doi.org/10.1111/ijfs.12210
  • Deniz, I., Ozen, M.O. and Yesil-Celiktas, O. (2016). Supercritical fluid extraction of phycocyanin and investigation of cytotoxicity on human lung cancer cells. The Journal of Supercritical Fluids 108, 13–18. https://doi.org/10.1016/j.supflu.2015.10.015
  • Dillehay, T.D., Ramírez, C., Pino, M., Collins, M.B., Rossen, J. and Pino-Navarro, J.D. (2008). Monte Verde: Seaweed, food, medicine, and the peopling of South America. Science 320, 784–786. https://doi.org/10.1126/science.1156533
  • Dinu, M., Vlasceanu, G., Dune, A. and Rotaru, G. (2012). Researches concerning the growth of nutritive value of the bread products through the Spirulina adding. Journal of Environmental Protection and Ecology 13, 660–665. https://scibulcom.net/en/article/WnPApjA3wYLp0t9kxI9o
  • Durmaz, Y., Kilicli, M., Toker, O.S., Konar, N., Palabiyik, I. and Tamtürk, F. (2020). Using spray-dried microalgae in ice cream formulation as a natural colorant: Effect on physicochemical and functional properties. Algal Research 47, 101811. https://doi.org/10.1016/j.algal.2020.101811
  • El-Baz, F.K., Abdo, S.M. and Hussein, A.M.S. (2017). Microalgae Dunaliella salina for use as Food Supplement to Improve Pasta Quality. International Journal of Pharmaceutical Sciences Review and Research 46, 45–51. https://globalresearchonline.net/journalcontents/v46-2/10.pdf
  • Ermakova, S., Sokolova, R., Kim, S.M., Um, B.H., Isakov, V. and Zvyagintseva, T. (2011). Fucoidans from Brown Seaweeds Sargassum hornery, Eclonia cava, Costaria costata: Structural Characteristics and Anticancer Activity. Applied Biochemistry and Biotechnology 164, 841–850. https://doi.org/10.1007/s12010-011-9178-2
  • Figueira, F., Crizel, T., Silva, C.R. and Sallas-Mellado, M. (2011). Elaboration of gluten-free bread enriched with the microalgae Spirulina platensis. Brazilian Journal of Food Technology 14, 308–316. https://www.scielo.br/j/bjft/a/fhhHkrbCSbXGRCxxKXmQgjF/?format=pdf&lang=pt
  • Figueiredo, F., Encarnação, T. and G. Campos, M. (2016). Algae as functional foods for the elderly. Food and nutrition sciences 7, 1122–1148. https://doi.org/10.4236/fns.2016.712107
  • Finney, K.F., Pomeranz, Y. and Bruinsma, B.L. (1984). Use of algae Dunaliella as a protein supplement in bread. Cereal Chemistry 61, 402–406. https://www.cerealsgrains.org/publications/cc/backissues/1984/Documents/chem61_402.pdf
  • Fradinho, P., Niccolai, A., Soares, R., Rodolfi, L., Biondi, N., Tredici, M.R., Sousa, I. and Raymundo, A. (2020). Effect of Arthrospira platensis (spirulina) incorporation on the rheological and bioactive properties of gluten-free fresh pasta. Algal Research 45, 101743. https://doi.org/10.1016/j.algal.2019.101743
  • Fradinho, P., Raymundo, A., Sousa, I., Domínguez, H. and Torres, M.D. (2019). Edible brown seaweed in gluten-free pasta: Technological and nutritional evaluation. Foods 8, 622. https://doi.org/10.3390/foods8120622
  • Fradique, M., Batista, A.P., Nunes, M.C., Gouveia, L., Bandarra, N.M. and Raymundo, A. (2010). Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation: Incorporation of microalgae biomass in pasta products. Journal of the Science of Food and Agriculture 90, 1656–1664. https://doi.org/10.1002/jsfa.3999
  • Fradique, M., Batista, A.P., Nunes, M.C., Gouveia, L., Bandarra, N.M. and Raymundo, A. (2013). Isochrysis galbana and Diacronema vlkianum biomass incorporation in pasta products as PUFA’s source. LWT-Food Science and Technology 50, 312–319. https://doi.org/10.1016/j.lwt.2012.05.006
  • García-Segovia, P., Pagán-Moreno, M.J., Lara, I.F. and Martínez-Monzó, J. (2017). Effect of microalgae incorporation on physicochemical and textural properties in wheat bread formulation. Food Science and Technology International 23, 437–447. https://doi.org/10.1177/1082013217700259
  • Gelgör, R.D., Ozcelik, D. and Haznedaroglu, B.Z. (2022). Effects of baking on the biochemical composition of Chlorella vulgaris. Algal Research 65, 102716. https://doi.org/10.1016/j.algal.2022.102716
  • Georgianna, D.R. and Mayfield, S.P. (2012). Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488, 329–335. https://doi.org/10.1038/nature11479
  • Go, H., Hwang, H.J. and Nam, T.J. (2010). A glycoprotein from Laminaria japonica induces apoptosis in HT-29 colon cancer cells. Toxicology in vitro 24, 1546–1553. https://doi.org/10.1016/j.tiv.2010.06.018
  • Golmakani, M.-T., Soleimanian-Zad, S., Alavi, N., Nazari, E. and Eskandari, M.H. (2019). Effect of Spirulina (Arthrospira platensis) powder on probiotic bacteriologically acidified feta-type cheese. Journal of Applied Phycology 31, 1085–1094. https://doi.org/10.1007/s10811-018-1611-2
  • González-López, C.V., García, M. del C.C., Fernández, F.G.A., Bustos, C.S., Chisti, Y. and Sevilla, J.M.F. (2010). Protein measurements of microalgal and cyanobacterial biomass. Bioresource Technology 101, 7587–7591. https://doi.org/10.1016/j.biortech.2010.04.077
  • Gorgônio, C.M. da S., Aranda, D.A.G. and Couri, S. (2013). Morphological and chemical aspects of Chlorella pyrenoidosa, Dunaliella tertiolecta, Isochrysis galbana and Tetraselmis gracilis microalgae. Natural Science 5, 783–791. https://doi.org/10.4236/ns.2013.57094
  • Gouveia, L., Batista, A.P., Miranda, A., Empis, J. and Raymundo, A. (2007). Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innovative Food Science and Emerging Technologies 8, 433–436. https://doi.org/10.1016/j.ifset.2007.03.026
  • Gouveia, L., Batista, A.P., Raymundo, A. and Bandarra, N. (2008a). Spirulina maxima and Diacronema vlkianum microalgae in vegetable gelled desserts. Nutrition and Food Science 38, 492–501. https://doi.org/10.1108/00346650810907010
  • Gouveia, L., Coutinho, C., Mendonça, E., Batista, A.P., Sousa, I. and Bandarra, N.M. (2008b). Functional biscuits with PUFA-w3 from Isochrysis galbana. Journal of the Science of Food and Agriculture 88, 891–896.  https://doi.org/10.1002/jsfa.3166
  • Gouveia, L., Raymundo, A., Batista, A.P., Sousa, I. and Empis, J. (2006). Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. European Food Research and Technology 222, 362–367. https://doi.org/10.1007/s00217-005-0105-z
  • Habib, M.A.B., Parvin, M., Huntington, T.C. and Hasan, M.R.(2008). A review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. Food and Agriculture Organization of the United Nations EBooks. https://www.researchgate.net/publication/325538453_A_Review_on_Culture_Production_and_Use_of_Spirulina_as_Food_for_Humans_and_Feed_for_Domestic_Animals_and_Fish
  • Hafting, J.T., Critchley, A.T., Cornish, M.L., Hubley, S.A. and Archibald, A.F. (2012). On-land cultivation of functional seaweed products for human usage. Journal of Applied Phycology 24, 385–392. https://doi.org/10.1007/s10811-011-9720-1
  • Hanjabam, M.D., Zynudheen, A.A., Ninan, G. and Panda, S. (2017). Seaweed as an ingredient for nutritional improvement of fish jerky: Seaweed for nutritional improvement of fish jerky. Journal of Food Processing and Preservation 41, e12845. https://doi.org/10.1111/jfpp.12845
  • Harari, A., Abecassis, R., Relevi, N., Levi, Z., Ben-Amotz, A., Kamari, Y., Harats, D. and Shaish, A. (2013). Prevention of atherosclerosis progression by 9-cis-β-carotene rich alga Dunaliella in apoE-deficient mice. BioMed Research International 1–7. https://doi.org/10.1155/2013/169517
  • Harwood, J. (2019). Algae: Critical sources of very long-chain polyunsaturated fatty acids. Biomolecules 9, 708. https://doi.org/10.3390/biom9110708
  • Hlaing, S.A.A., Sadiq, M.B. and Anal, A.K. (2020). Enhanced yield of Scenedesmus obliquus biomacromolecules through medium optimization and development of microalgae based functional chocolate. Journal of Food Science and Technology 57, 1090–1099. https://doi.org/10.1007/s13197-019-04144-3
  • Hossain, A.K.M.M., Brennan, M.A., Mason, S.L., Guo, X., Zeng, X.A. and Brennan, C.S. (2017). The effect of astaxanthin-rich microalgae “Haematococcus pluvialis” and wholemeal flours incorporation in improving the physical and functional properties of cookies. Foods 6, 57. https://doi.org/10.3390/foods6080057
  • Hu, J., Nagarajan, D., Zhang, Q., Chang, J.-S. and Lee, D.-J. (2018). Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances 36, 54–67. https://doi.org/10.1016/j.biotechadv.2017.09.009
  • Huleihel, M., Ishanu, V., Tal, J. and Arad, S.M. (2001). Antiviral effect of red microalgal polysaccharides on Herpes simplex and Varicella zoster viruses. Journal of Applied Phycology 13, 127–134. https://doi.org/10.1023/A:1011178225912
  • Hung, L.D., Nguyen, H.T.T. and Trang, V.T.D. (2021). Kappa carrageenan from the red alga Kappaphycus striatus cultivated at Vanphong Bay, Vietnam: physicochemical properties and structure. Journal of Applied Phycology 33, 1819–1824. https://doi.org/10.1007/s10811-021-02415-1
  • Jannat-Alipour, H., Rezaei, M., Shabanpour, B., Tabarsa, M. and Rafipour, F. (2019). Addition of seaweed powder and sulphated polysaccharide on shelf_life extension of functional fish surimi restructured product. Journal of Food Science and Technology 56, 3777–3789. https://doi.org/10.1007/s13197-019-03846-y
  • Jeon, J.K. (2006). Effect of Chlorella addition on the quality of processed cheese. Journal of the Korean Society of Food Science and Nutrition 35, 373–377. DOI: 10.3746/jkfn.2006.35.3.373
  • Karadağ, A., Hermund, D.B., Jensen, L.H.S., Andersen, U., Jónsdóttir, R., Kristinsson, H. G., Alasalvar, C. and Jacobsen, C. (2017). Oxidative stability and microstructure of 5% fish‐oil‐enriched granola bars added natural antioxidants derived from brown alga Fucus vesiculosus. European Journal of Lipid Science and Technology 119, 1500578. https://doi.org/10.1002/ejlt.201500578
  • Kent, M., Welladsen, H.M., Mangott, A. and Li, Y. (2015). Nutritional evaluation of Australian microalgae as potential human health supplements. PloS One 10, e0118985. https://doi.org/10.1371/journal.pone.0118985
  • Khafagy, M., El-Shekheby, H. and El-Kholie, E. (2023). Potential Effect of some Bakery Products Supplemented with Spirulina Algae in Alloxan-Induced Diabetic Rats. Journal of Home Economics 33, 29-40. DOI: 10.21608/MKAS.2023.187551.1207
  • Khaledabad, A., Ghasempour, M., Kia, Z., Bari, E.M. and Zarrin, M.R. (2020). Probiotic yoghurt functionalised with microalgae and Zedo gum: Chemical, microbiological, rheological and sensory characteristics. International Journal of Dairy Technology 73, 67–75. https://doi.org/10.1111/1471-0307.12625
  • Kong, C.S., Kim, J.A., Yoon, N.Y. and Kim, S.K. (2009). Induction of apoptosis by phloroglucinol derivative from Ecklonia Cava in MCF-7 human breast cancer cells. Food and Chemical Toxicology 47, 1653–1658. https://doi.org/10.1016/j.fct.2009.04.013
  • Kumar, A., Krishnamoorthy, E., Devi, H.M., Uchoi, D., Tejpal, C.S., Ninan, G. and Zynudheen, A.A. (2018). Influence of sea grapes (Caulerpa racemosa) supplementation on physical, functional, and anti-oxidant properties of semi-sweet biscuits. Journal of Applied Phycology 30, 1393–1403. https://doi.org/10.1007/s10811-017-1310-4
  • Lafarga, T., Mayre, E., Echeverria, G., Viñas, I., Villaró, S., Acién-Fernández, F.G., Castellari, M. and Aguiló-Aguayo, I. (2019). Potential of the microalgae Nannochloropsis and Tetraselmis for being used as innovative ingredients in baked goods. LWT-Food Science and Technology 115, 108439. https://doi.org/10.1016/j.lwt.2019.108439
  • Lahaye, M. and Robic, A. (2007). Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 8, 1765–1774. https://doi.org/10.1021/bm061185q
  • Lang, I., Hodac, L., Friedl, T. and Feussner, I. (2011). Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biology 11. https://doi.org/10.1186/1471-2229-11-124
  • Li, Y., Qian, Z.J., Ryu, B., Lee, S.H., Kim, M.M. and Kim, S.K. (2009). Chemical components and its antioxidant properties in vitro: An edible marine brown alga, Ecklonia cava. Bioorganic & Medicinal Chemistry 17, 1963–1973. https://doi.org/10.1016/j.bmc.2009.01.031
  • Littler, M.M. and D.S. Littler. (1994). Tropical reefs as complex habitats for diverse macroalgae. In: Seaweed Ecology and Physiology, (C.S. Lobban and P.J. Harrison, eds.), Pp. 72-75. Cambridge Univ. Press, Nueva York.
  • Littler, M.M. and Littler, D.S. (2013). The Nature of macroalgae and their interactions on reefs. In: Research and Discoveries: The Revolution of Science through Scuba, (M.A. Lang, R.L. Marinelli, S.J. Roberts and P.R. Taylor, eds.), Pp. 187–198. Smithsonian Institution Scholarly Press, Washington, D.C.
  • Littler, M.M., Littler, D.S. and Taylor, P.R. (1983). Evolutionary Stages in a Tropical Barrier Reef System: Functional-Form Groups of Marine Macroalgae. Journal of Phycology 19, 229-237. http://dx.doi.org/10.1111/j.0022-3646.1983.00229.x
  • Lucas, B.F., Morais, M.G. de, Santos, T.D., and Costa, J.AV. (2018). Spirulina for snack enrichment: Nutritional, physical and sensory evaluations. LWT-Food Science and Technology 90, 270–276. https://doi.org/10.1016/j.lwt.2017.12.032
  • Mader, J., Gallo, A., Schommartz, T., Handke, W., Nagel, C.-H., Günther, P., Brune, W., and Reich, K. (2016). Calcium spirulan derived from Spirulina platensis inhibits herpes simplex virus 1 attachment to human keratinocytes and protects against herpes labialis. The Journal of Allergy and Clinical Immunology 137, 197-203. e3. https://doi.org/10.1016/j.jaci.2015.07.027
  • Mamat, H., Matanjun, P., Ibrahim, S., Md. Amin, S.F., Abdul-Hamid, M. and Rameli, A.S. (2014). The effect of seaweed composite flour on the textural properties of dough and bread. Journal of Applied Phycology 26, 1057–1062. https://doi.org/10.1007/s10811-013-0082-8
  • Martínez-Palma, N., Martínez-Ayala, A. and Dávila-Ortíz, G. (2015). Determination of antioxidant and chelating activity of protein hydrolysates from spirulina (Arthrospira maxima) obtained by simulated gastrointestinal digestion. Revista Mexicana de Ingeniería Química14, 25-34. http://rmiq.org/ojs311/index.php/rmiq/article/view/1175/471
  • Matos, Â.P. (2017). The impact of microalgae in food science and technology. Journal of the American Oil Chemists’ Society 94, 1333–1350. https://doi.org/10.1007/s11746-017-3050-7
  • Matos, Â.P., Novelli, E. and Tribuzi, G. (2022). Use of algae as food ingredient: sensory acceptance and commercial products. Frontiers in food science and technology 2, 989801. https://doi.org/10.3389/frfst.2022.989801
  • Matos, J., Afonso, C., Cardoso, C., Serralheiro, M.L. and Bandarra, N.M. (2021). Yogurt Enriched with Isochrysis galbana: An Innovative Functional Food. Foods 10, 1458. https://doi.org/10.3390/foods10071458
  • Meenakshi, S., Manicka Gnanambigai, D., Tamil mozhi, S., Arumugam, M. and Balasubramanian, T. (2009). Total Flavanoid and in vitro Antioxidant Activity of Two Seaweeds of Rameshwaram Coast. Global Journal of Pharmacology 3, 59-62. https://idosi.org/gjp/3(2)09/1.pdf
  • Menezes, B.S., Coelho, M.S., Meza, S.L.R., Salas-Mellado, M. and Souza, M.R.A.Z. (2015). Macroalgal biomass as an additional ingredient of bread. International Food Research Journal 22(2), 812–817. http://ifrj.upm.edu.my/22%20(02)%202015/(50).pdf
  • Milledge, J.J. (2011). Commercial application of microalgae other than as biofuels: a brief review. Reviews in Environmental Science and BioTechnology 10, 31–41. https://doi.org/10.1007/s11157-010-9214-7
  • Mohamed, A.G., El-Salam, B.A.E.-Y.A. and Gafour, W.A.E.-M. (2020). Quality characteristics of processed cheese fortified with Spirulina powder. Pakistan Journal of Biological Sciences 23, 533–541. https://doi.org/10.3923/pjbs.2020.533.541
  • Molnár, N., Gyenis, B. and Varga, L. (2005). Influence of a powdered Spirulina platensis biomass on acid production of lactococci in milk. Milchwissenschaft-milk Science International 60, 380–382. https://api.semanticscholar.org/CorpusID:99127345
  • Neumann, U., Derwenskus, F., Flaiz Flister, V., Schmid-Staiger, U., Hirth, T. and Bischoff, S. (2019). Fucoxanthin, A carotenoid derived from Phaeodactylum tricornutum exerts antiproliferative and antioxidant activities in vitro. Antioxidants 8, 183. https://doi.org/10.3390/antiox8060183
  • Niccolai, A., Bažec, K., Rodolfi, L., Biondi, N., Zlatić, E., Jamnik, P. and Tredici, M.R. (2020). Lactic acid fermentation of Arthrospira platensis (Spirulina) in a vegetal soybean drink for developing new functional lactose-free beverages. Frontiers in microbiology 11, 560684. https://doi.org/10.3389/fmicb.2020.560684
  • Ohse, S., Bianchini-Derner, R., Ávila-Ozório, R., Gordo-Corrêa, R., Badiale-Furlong, E. and Roberto-Cunha, P.C. (2015). Lipid content and fatty acid profiles in ten species of microalgae. Idesia 33, 93–101. https://doi.org/10.4067/s0718-34292015000100010
  • Oliveira, M.A.C.L.de, Monteiro, M.P.C., Robbs, P.G. and Leite, S.G.F. (1999). Aquaculture international 7, 261–275. https://doi.org/10.1023/a:1009233230706
  • Onwezen, M.C., Bouwman, E.P., Reinders, M.J. and Dagevos, H. (2021). A systematic review on consumer acceptance of alternative proteins: Pulses, algae, insects, plant-based meat alternatives, and cultured meat. Appetite 159, 105058. https://doi.org/10.1016/j.appet.2020.105058
  • Pane, G., Cacciola, G., Giacco, E., Mariottini, G. and Coppo, E. (2015). Assessment of the antimicrobial activity of algae extracts on bacteria responsible of external otitis. Marine Drugs 13, 6440–6452. https://doi.org/10.3390/md13106440
  • Pasquet, V., Morisset, P., Ihammouine, S., Chepied, A., Aumailley, L., Berard, J.-B., Serive, B., Kaas, R., Lanneluc, I., Thiery, V., Lafferriere, M., Piot, J.-M., Patrice, T., Cadoret, J.-P. and Picot, L. (2011). Antiproliferative activity of violaxanthin isolated from bioguided fractionation of Dunaliella tertiolecta extracts. Marine Drugs 9, 819–831. https://doi.org/10.3390/md9050819
  • Paul, V.J., Arthur, K.E., Ritson-Williams, R., Ross, C. and Sharp, K. (2007). Chemical defenses: From compounds to communities. The Biological Bulletin 213, 226–251. https://doi.org/10.2307/25066642
  • Pawar, U., Desai, N., Dethe, U., Aparadh, V. and Gaikwad, D. (2022). Algae as nutraceutical, functional food, and food ingredients. In: Algal genetic resources: Cosmeceuticals, Nutraceuticals, and Pharmaceuticals from Algae, (J. Sangeetha and D. Thangadurai, eds.), Pp. 33–44. Apple Academic Press, New Jersey.
  • Peña-Solis, K., Soriano-Santos, J., Sánchez, C., and Díaz-Godínez, G. (2023). Functional properties and antioxidant activity of protein fractions of spirulina (Arthrospira maxima). Revista Mexicana de Ingeniería Química 22, Bio2967. https://doi.org/10.24275/rmiq/bio2967
  • Peñalver, R., Lorenzo, J.M., Ros, G., Amarowicz, R., Pateiro, M. and Nieto, G. (2020). Seaweeds as a functional ingredient for a healthy diet. Marine Drugs 18, 301. https://doi.org/10.3390/md18060301
  • Pindi, W., Mah, H.W., Munsu, E. and Ab Wahab, N. (2017). Effects of addition of Kappaphycus alvarezii on physicochemical properties and lipid oxidation of mechanically deboned chicken meat (MDCM) sausages. British Food Journal 119, 2229–2239. https://doi.org/10.1108/bfj-10-2016-0501
  • Prabakaran, G., Sampathkumar, P., Kavisri, M. and Moovendhan, M. (2020). Extraction and characterization of phycocyanin from Spirulina platensis and evaluation of its anticancer, antidiabetic and antiinflammatory effect. International Journal of Biological Macromolecules 153, 256–263. https://doi.org/10.1016/j.ijbiomac.2020.03.009
  • Prarthana, J. and Maruthi, K.R. (2018). Fresh water algae as a potential source of bioactive compounds for aquaculture and significance of solvent system in extraction of antimicrobials. Asian journal of scientific research 12, 18–28. https://doi.org/10.3923/ajsr.2019.18.28
  • Qazi, W.M., Ballance, S., Kousoulaki, K., Uhlen, A.K., Kleinegris, D.M.M., Skjånes, K. and Rieder, A. (2021). Protein Enrichment of Wheat Bread with Microalgae: Microchloropsis gaditana, Tetraselmis chui and Chlorella vulgaris. Foods 10, 3078. https://doi.org/10.3390/foods10123078
  • Qian, H. (2004). Industrial production of microalgal cell-mass and secondary products - major industrial species: Arthrospira (Spirulina) platensis. In: Biotechnology: Vol. applied phycology, (A. Richmond ed.), Pp. 265–272. Blackwell, USA.
  • Queiroz, K.C.S., Medeiros, V.P., Queiroz, L.S., Abreu, L.R.D., Rocha, H.A.O., Ferreira, C.V., Jucá, M.B., Aoyama, H. and Leite, E.L. (2008). Inhibition of reverse transcriptase activity of HIV by polysaccharides of brown algae. Biomedecine & Pharmacotherapie 62, 303–307. https://doi.org/10.1016/j.biopha.2008.03.006
  • Rao, R. and Ravishankar, G.A. (2018). Algae as source of functional ingredients for health benefits. Agricultural Research and Technology 14, 555911. https://doi.org/10.19080/artoaj.2018.14.555911
  • Raven, J.A., and Giordano, M. (2014). Algae. Current Biology 24, R590–R595. https://doi.org/10.1016/j.cub.2014.05.039
  • Raymundo, A., Gouveia, L., Batista, A.P., Empis, J. and Sousa, I. (2005). Fat mimetic capacity of Chlorella vulgaris biomass in oil-in-water food emulsions stabilized by pea protein. Food Research International 38, 961–965. https://doi.org/10.1016/j.foodres.2005.02.016
  • Ribeiro, A.R., Madeira, T., Botelho, G., Martins, D., Ferreira, R.M., Silva, A.M.S., Cardoso, S.M. and Costa, R. (2022). Brown algae Fucus vesiculosus in pasta: Effects on textural quality, cooking properties, and sensorial traits. Foods 11, 1561. https://doi.org/10.3390/foods11111561
  • Ricketts, T.R. (1966). On the chemical composition of some unicellular algae. Phytochemistry 5, 67–76. https://doi.org/10.1016/s0031-9422(00)85082-7
  • Riyad, Y.M., Naeem, M.M.M. and Slama, S. (2020). Evaluation of gluten-free noodles fortified by Spirulina algae. Egyptian Journal of Nutrition 35, 133–159. DOI: 10.21608/ENJ.2020.144758
  • Robertson, R.C., Gracia-Mateo, M.R., Grady, M.N., Guihéneuf, F., Stengel, D.B., and Ross, R.P. (2016). An assessment of the techno-functional and sensory properties of yoghurt fortified with a lipid extract from the microalga Pavlova lutheri. Innovative Food Science and Emerging Technologies 37, 237–246. https://doi.org/10.1016/j.ifset.2016.03.017
  • Rocha de Souza, M.C., Marques, C.T., Guerra, D.C.M., Ferreira da Silva, F.R., Oliveira, R.H.A. and Leite, E.L. (2007). Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. Journal of Applied Phycology 19, 153–160. https://doi.org/10.1007/s10811-006-9121-z
  • Rutzler, K., Santavy, D.L. and Antonius, A. (1983). The black band disease of Atlantic reef corals: III. Distribution, ecology, and development. Marine Ecology 4, 329–358. https://doi.org/10.1111/j.1439-0485.1983.tb00118.x
  • Safi, C., Ursu, A.V., Laroche, C., Zebib, B., Merah, O., Pontalier, P.-Y. and Vaca-Garcia, C. (2014). Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods. Algal Research 3, 61–65. https://doi.org/10.1016/j.algal.2013.12.004
  • Sahu, A., Pancha, I., Jain, D., Paliwal, C., Ghosh, T., Patidar, S., Bhattacharya, S. and Mishra, S. (2013). Fatty acids as biomarkers of microalgae. Phytochemistry 89, 53–58. https://doi.org/10.1016/j.phytochem.2013.02.001
  • Sathasivam, R., Radhakrishnan, R., Hashem, A. and Abd_Allah, E.F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences 26, 709–722. https://doi.org/10.1016/j.sjbs.2017.11.003
  • Schwenzfeier, A., Wierenga, P.A. and Gruppen, H. (2011). Isolation and characterization of soluble protein from the green microalgae Tetraselmis sp. Bioresource Technology 102, 9121–9127. https://doi.org/10.1016/j.biortech.2011.07.046
  • Shahidi, F. (2012). Nutraceuticals, functional foods and dietary supplements in health and disease. Journal of Food and Drug Analysis 20. https://doi.org/10.38212/2224-6614.2144
  • Shanmughapriya, S., Manilal, A., Sujith, S., Selvin, J., Kiran, G.S. and Natarajaseenivasan, K. (2008). Antimicrobial activity of seaweeds extracts against multiresistant pathogens. Annals of Microbiology 58, 535–541. https://doi.org/10.1007/bf03175554
  • Silva, S.C., Ferreira, I.C.F.R., Dias, M.M. and Barreiro, M.F. (2020). Microalgae-derived pigments: A 10-year bibliometric review and industry and market trend analysis. Molecules 25, 3406. https://doi.org/10.3390/molecules25153406
  • Singh, P., Singh, R., Jha, A., Rasane, P. and Gautam, A.K. (2015). Optimization of a process for high fibre and high protein biscuit. Journal of Food Science and Technology 52, 1394–1403. https://doi.org/10.1007/s13197-013-1139-z
  • Slocombe, S.P., Ross, M., Thomas, N., McNeill, S. and Stanley, M.S. (2013). A rapid and general method for measurement of protein in micro-algal biomass. Bioresource Technology 129, 51–57. https://doi.org/10.1016/j.biortech.2012.10.163
  • Solis-Méndez, A., Molina-Quintero, M., Oropeza de la Rosa, E., Cantú-Lozano, D. and Del Bianchi, V. (2020). Study of agitation, color and stress light variables on Spirulina platensis culture in a vertical stirred reactor in standard medium. Revista Mexicana de Ingeniería Química 19, 481-490. https://doi. org/10.24275/rmiq/Bio616
  • Sukhikh, S., Ivanova, S., Dolganyuk, V., Pilevinova, I., Prosekov, A., Ulrikh, E., Noskova, S., Michaud, P. and Babich, O. (2022). Evaluation of the prospects for the use of microalgae in functional bread production. Applied Sciences 12, 12563. https://doi.org/10.3390/app122412563
  • Tavares-Estevam, A.C., Alonso Buriti, F.C., de Oliveira, T.A., Pereira, E.V. dos S., Florentino, E.R. and Porto, A.L.F. (2016). Effect of aqueous extract of the seaweed Gracilaria domingensis on the physicochemical, microbiological, and textural features of fermented milks. Journal of Food Science 81. https://doi.org/10.1111/1750-3841.13264
  • Tibbetts, S.M., Milley, J.E. and Lall, S.P. (2015). Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. Journal of Applied Phycology 27, 1109–1119. https://doi.org/10.1007/s10811-014-0428-x
  • Tiepo, C.B.V., Gottardo, F.M., Mortari, L.M., Bertol, C.D., Reinehr, C.O. and Colla, L.M. (2021). Addition of Spirulina platensis in handmade ice cream: Phisicochemical and sensory effects. Brazilian Journal of Development7, 88106–88123. https://doi.org/10.34117/bjdv7n9-121
  • Tohamy, M.M., Ali, M.A., Shaaban, H.A.-G., Mohamad, A.G. and Hasanain, A.M. (2018). Production of functional spreadable processed cheese using Chlorella vulgaris. Acta Scientiarum Polonorum Technologia Alimentaria 17, 347–358. https://doi.org/10.17306/J.AFS.0589
  • Tuney, I., Çadirci, B.H., Ünal, D. and Sukatar, A. (2006). Antimicrobial Activities of the Extracts of Marine Algae from the Coast of Urla (İzmir, Turkey). Turkish Journal of Biology 30, 171-175. file:///Users/gdg/Downloads/Tuney2006tubitak.pdf
  • Uribe-Wandurraga, Z.N., Igual, M., Reino-Moyón, J., García-Segovia, P. and Martínez-Monzó, J. (2021). Effect of Microalgae (Arthrospira platensis and Chlorella vulgaris) Addition on 3D Printed Cookies. Food Biophysics 16, 27–39. https://doi.org/10.1007/s11483-020-09642-y
  • Varga, L., Szigeti, J., Kovács, R., Földes, T. and Buti, S. (2002). Influence of a Spirulina platensis biomass on the microflora of fermented ABT milks during storage (R1). Journal of Dairy Science 85, 1031–1038. https://doi.org/10.3168/jds.s0022-0302(02)74163-5
  • Velasco, L.A., Carrera, S. and Barros, J. (2016). Isolation, culture and evaluation of Chaetoceros muelleri from the Caribbean as food for the native scallops, Argopecten nucleus and Nodipecten nodosus. Latin American Journal of Aquatic Research 44, 557–568. https://doi.org/10.3856/vol44-issue3-fulltext-14
  • Veluchamy, C. and Palaniswamy, R. (2020). A review on marine algae and its applications. Asian journal of pharmaceutical and clinical research 13, 21–27. https://doi.org/10.22159/ajpcr.2020.v13i3.36130
  • Villarruel-López, A., Ascencio, F. and Nuño, K. (2017). Microalgae, a potential natural functional food source–a review. Polish Journal of Food and Nutrition Sciences 67, 251–263. https://doi.org/10.1515/pjfns-2017-0017
  • Wang, Y., Tibbetts, S. and McGinn, P. (2021). Microalgae as sources of high-quality protein for human food and protein supplements. Foods 10, 3002. https://doi.org/10.3390/foods10123002
  • Wells, M.L., Potin, P., Craigie, J.S., Raven, J.A., Merchant, S.S., Helliwell, K.E., Smith, A. G., Camire, M.E. and Brawley, S.H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology 29, 949–982. https://doi.org/10.1007/s10811-016-0974-5