Vol. 23, No. 2 (2024), Bio24211 https://doi.org/10.24275/rmiq/Bio24211


Effect of the carbon-nitrogen ratio on the co-production of polyhydroxyalkanoates and exopolysaccharides by Enterobacter soli


 

Authors

A.P. Gayosso-Sánchez, R. Hernández-Martínez, N.A. Pacheco-López, J.A. Herrera-Corredor, S. Valdivia-Rivera, I.E. Herrera-Pool


Abstract

The pollution generated by the indiscriminate use of conventional plastics has caused severe damage to the environment, so there is a need for alternatives such as the production of bioplastics from renewable sources. In the present work, the effect of different carbon to nitrogen (C/N) ratio (3, 7 and 11) and three carbon souces (sucrose, glucose and fructose) on co-production of polyhydroxyalkanoates and exopolysaccharides by Enterobacter soli in submerged culture was evaluated. The results showed that nitrogen limitation promoted the accumulation of polyhydroxyalkanoates, since with a C/N ratio of 11 the highest concentration was obtained (33 mg L-1). On the other hand, high concentrations of nitrogen result in increased exopolysaccharides production (reported as precipitate g L-1) with a C/N ratio of 3 (1.09 g·L-1). Considering the results obtained, the production of biopolymers and consumption of sucrose were evaluated by means of a growth kinetics adjusting the C/N ratio to 11. The consumption of sucrose, glucose, and fructose substrate is consistent with the production of biomass, PHAs, and exopolysaccharides. The characterization of the biopolymers showed that E. soli is capable of co-producing polyhydroxybutyrate and inulin (recovered precipitate), such biopolymers were characterized by FTIR and mass spectrometry, respectively.


Keywords

Biopolymer, bioplastic, co-production, submerged cultivation.


References

  • Aguilar, C.N. (1998). Represión catabólica de la Síntesis de Enzimas Microbianas en Cultivos Liquido y Solido. Revista Latinoamericana de Microbiología México 40, 158-165.
  • Almutairi, M.H., and Helal, M.M. (2021). Biological and microbiological activities of isolated Enterobacter sp. ACD2 exopolysaccharides from Tabuk region of Saudi Arabia. Journal of King Saud University-Science, 33(2), 101328. https://doi.org/10.1016/j.jksus.2020.101328
  • Amaro, T.M., Rosa, D., Comi, G., and Iacumin, L. (2019). Prospects for the use of whey for polyhydroxyalkanoate (PHA) production. Frontiers in Microbiology 10, 992. https://doi.org/10.3389/fmicb.2019.00992
  • Anguluri, K., La China, S., Brugnoli, M., De Vero, L., Pulvirenti, A., Cassanelli, S., and Gullo, M. (2022). Candidate acetic acid bacteria strains for levan production. Polymers 14, 2000. https://doi.org/10.3390/polym14102000
  • Aramsangtienchai, P., Kongmon, T., Pechroj, S., and Srisook, K. (2020). Enhanced production and immunomodulatory activity of levan from the acetic acid bacterium, Tanticharoenia sakaeratensis. International Journal of Biological Macromolecules 163, 574-581. https://doi.org/10.1016/j.ijbiomac.2020.07.001
  • Arruda, H.S., Silva, E.K., Pereira, G.A., Meireles, M.A.A. and Pastore, G.M. (2020). Inulin thermal stability in prebiotic carbohydrate-enriched araticum whey beverage. LWT 128, 109418. https://doi.org/10.1016/j.lwt.2020.109418
  • Beltrán-Sanahuja, A., Benito-Kaesbach, A., Sánchez-García, N., and Sanz-Lázaro, C. (2021). Degradation of conventional and biobased plastics in soil under contrasting environmental conditions. Science of The Total Environment 787, 147678. https://doi.org/10.1016/j.scitotenv.2021.147678
  • Bhatia, S.K., Gurav, R., Kim, B., Kim, S., Cho, D.H., Jung, H., Kim, J.S., and Yang, Y.H. (2022). Coproduction of exopolysaccharide and polyhydroxyalkanoates from Sphingobium yanoikuyae BBL01 using biochar pretreated plant biomass hydrolysate. Bioresource Technology 361, 127753. https://doi.org/10.1016/j.biortech.2022.127753
  • Brükner, R. and Titgemeyer. (2002). Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiology Letters 209, 141-148. https://doi.org/10.1111/j.1574-6968.2002.tb11123.x
  • Castilla-Marroquín, J.D., Hernández-Martínez, R., de la Vequia, H.D., Ríos-Corripio, M.A., Hernández-Rosas, J., López, M.R., and Hernández-Rosas, F. (2020). Dextran synthesis by native sugarcane microorganisms. Revista Mexicana de Ingeniería Química 19, 177-185. https://doi.org/10.24275/rmiq/Bio1793
  • Choi, T.R., Park, Y.L., Song, H.S., Lee, S.M., Park, S.L., Lee, H.S., Bathia, S.K, Gurav, R., Choi, K.Y., Lee, Y.K., and Yang, Y.H. (2021). Fructose-based production of short-chain-length and medium-chain-length polyhydroxyalkanoate copolymer by arctic Pseudomonas sp. B14-6. Polymers 13(9), 1398. https://doi.org/10.3390/polym13091398
  • Cui, Y.W., Shi, Y.P., and Gong, X.Y. (2017). Effects of C/N in the substrate on the simultaneous production of polyhydroxyalkanoates and extracellular polymeric substances by Haloferax mediterranei via kinetic model analysis. RSC advances 7(31), 18953-18961. https://doi.org/10.1039/c7ra02131c
  • Díaz-Ramos, DI., Jiménez-Fernández, M., García-Barradas, O., Chacón-López, M.A., Montalvo-González, E., López-García, U.M., Beristain-Guevara, C.I., and Ortiz-Basurto, R.I. (2023). Structural, thermal, and functional properties of Agave tequilana fructan fractions modified by acylation. Revista Mexicana de Ingeniería Química 22(3), Poly2329. https://doi.org/10.24275/rmiq/Poly2329
  • Dilkes-Hoffman, L.S., Lant, P.A., Laycock, B., and Pratt, S. (2019). The rate of biodegradation of PHA bioplastics in the marine environment: A meta-study. Marine Pollution Bulletin 142, 15-24. https://doi.org/10.1016/j.marpolbul.2019.03.020
  • Duboc, P., Schill, N., Menoud, L., Van Gulik, W., and Von Stockar, U. (1995). Measurements of sulfur, phosphorus and other ions in microbial biomass: influence on correct determination of elemental composition and degree of reduction. Journal of biotechnology 43(2), 145-158. https://doi.org/10.1016/0168-1656(95)00135-0
  • El-Kholy, W.M., Aamer, R. A., and Ali, A.N.A. (2020). Utilization of inulin extracted from chicory (Cichorium intybus L.) roots to improve the properties of low-fat synbiotic yoghurt. Annals of Agricultural Sciences 65(1), 59-67. https://doi.org/10.1016/j.aoas.2020.02.002
  • Etxabide, A., Kilmartin, P.A., Guerrero, P., de la Caba, K., Hooks, D.O., West, M., and Singh, T. (2022). Polyhydroxybutyrate (PHB) produced from red grape pomace: Effect of purification processes on structural, thermal and antioxidant properties. International Journal of Biological Macromolecules 217, 449-456. https://doi.org/10.1016/j.ijbiomac.2022.07.072
  • Folino, A., Karageorgiou, A., Calabrò, P.S., and Komilis, D. (2020). Biodegradation of wasted bioplastics in natural and industrial environments: A review. Sustainability 12(15), 6030. https://doi.org/10.1016/j.marpolbul.2019.03.020
  • Giraldo-Montoya, J.M., Castaño-Villa, G.J., and Rivera-Páez, F.A. (2020). Bacteria from industrial waste: potential producers of polyhydroxyalkanoates (PHAs) in Manizales, Colombia. Environmental Monitoring and Assessment 192, 1-8. https://doi.org/10.1007/s10661-020-08461-5
  • Goel, V., Luthra, P., Kapur, G. S., and Ramakumar, S.S.V. (2021). Biodegradable/bio-plastics: myths and realities. Journal of Polymers and the Environment 29, 3079-3104. https://doi.org/10.1007/s10924-021-02099-1
  • Hernández-Rosas, F., Castilla-Marroquín, J.D., Loeza-Corte, J.M., Lizardi-Jiménez, M.A., and Martínez, R.H. (2021). The importance of carbon and nitrogen sources on exopolysaccharide synthesis by lactic acid bacteria and their industrial importance. Revista Mexicana de Ingeniería Química, 20(3), Bio2429. https://doi.org/10.24275/rmiq/Bio2429
  • Huang, L., Chen, Z., Wen, Q., Zhao, L., Lee, D. J., Yang, L., and Wang, Y. (2018). Insights into Feast-Famine polyhydroxyalkanoate (PHA)-producer selection: Microbial community succession, relationships with system function and underlying driving forces. Water Research 131, 167-176. https://doi.org/10.1016/j.watres.2017.12.033
  • Jayakrishnan, U., Deka, D., and Das, G. (2020). Influence of inoculum variation and nutrient availability on polyhydroxybutyrate production from activated sludge. International Journal of Biological Macromolecules 163, 2032-2047. https://doi.org/10.1016/j.ijbiomac.2020.09.061
  • Khatami, K., Perez-Zabaleta, M., Owusu-Agyeman, I., and Cetecioglu, Z. (2021). Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production? Waste Management 119, 374-388. https://doi.org/10.1016/j.wasman.2020.10.008
  • Koller M. and Obruča, S. (2022). Biotechnological production of polyhydroxyalkanoates from glycerol: A review. Biocatalysis and Agricultural Biotechnology 42, 102333. https://doi.org/10.1016/j.bcab.2022.102333
  • Kopperi, H., Amulya, K., and Mohan, S.V. (2021). Simultaneous biosynthesis of bacterial polyhydroxybutyrate (PHB) and extracellular polymeric substances (EPS): Process optimization and Scale-up. Bioresource Technology, 341, 125735. https://doi.org/10.1016/j.biortech.2021.125735
  • Kumar, M., Rathour, R., Singh, R., Sun, Y., Pandey A., Gnansounou, E., Lin, K.Y.A., Tsang, D.C.W., and Thakur, I.S. (2020). Bacterial polyhydroxyalkanoates: Opportunities, challenges, and prospects. Journal of Cleaner Production 263, 121500. https://doi.org/10.1016/j.jclepro.2020.121500
  • Kumar, P. and Kim, B.S. (2018). Valorization of polyhydroxyalkanoates production process by co-synthesis of value-added products. Bioresource Technology 269, 544-556. https://doi.org/10.1016/j.biortech.2018.08.120
  • Lane, D.J. (1991). 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics, (E. Stackebrandt and M. Goodfellow M., eds.), Pp. 115-147. Wiley, New York.
  • Li, J., Hu, D., Zong, W., Lv, G., Zhao, J., and Li, S. (2014). Determination of inulin-type fructooligosaccharides in edible plants by high-performance liquid chromatography with charged aerosol detector. Journal of agricultural and food chemistry 62(31), 7707-7713. https://doi.org/10.1021/jf502329n
  • Lizardi-Jiménez, M.A., Saucedo-Castañeda, G., Thalasso, F., and Gutiérrez-Rojas, M. (2012). Simultaneous hexadecane and oxygen transfer rate on the production of an oil-degrading consortium in a three-phase airlift bioreactor. Chemical Engineering Journal 187, 160-165. https://doi.org/10.1016/j.cej.2012.01.114
  • López-Alcántara, R., Borges-Cu, J.L., Ramírez-Benítez, J E., Garza-Ortiz, A., Núñez-Oreza, L.A., and Hernández-Vázquez, O.H. (2022). Importance of the C/N-ratio on biomass production and antimicrobial activity from marine bacteria Pseudoalteromonas sp. Revista Mexicana de Ingeniería Química 21(2), Bio2695-Bio2695. https://doi.org/10.24275/rmiq/Bio2695
  • Meneses, L., Esmail, A., Matos, M., Sevrin, C., Grandfils, C., Barreiros, S., Reis, M.A.M., Freitas, F., and Paiva, A. (2022). Subcritical Water as a Pre-Treatment of Mixed Microbial Biomass for the Extraction of Polyhydroxyalkanoates. Bioengineering 9, 302. https://doi.org/10.3390/ bioengineering9070302
  • Muneer, F., Rasul, I., Qasim, M., Sajid, A., and Nadeem, H. (2022). Optimization, Production and Characterization of Polyhydroxyalkanoate (PHA) from Indigenously Isolated Novel Bacteria. Journal of Polymers and the Environment 30(8), 3523-3533. https://doi.org/10.1007/s10924-022-02444-y
  • Nair, A., and Sarma, S. J. (2021). The impact of carbon and nitrogen catabolite repression in microorganisms. Microbiological Research 251, 126831. https://doi.org/10.1016/j.micres.2021.126831
  • Narciso-Ortiz, L., Coreño-Alonso, A., Mendoza-Olivares, D., Lucho-Constantino, C.A., and Lizardi-Jiménez, M.A. (2020). Baseline for plastic and hydrocarbon pollution of rivers, reefs, and sediment on beaches in Veracruz State, México, and a proposal for bioremediation. Environmental Science and Pollution Research 27, 23035-23047. https://doi.org/10.1007/s11356-020-08831-z
  • Narciso-Ortiz, L., Tec-Caamal, E.N., Aguirre-García, G.J., and Lizardi-Jiménez, M.A. (2023). Bioreactors for Bioremediation of Polluted Water. In Current Status of Marine Water Microbiology (R. Soni, D.C. Suyal, L. Morales-Oyervides, and M. Fouillaud, eds.) Pp. 345-364. Singapore, Springer Nature Singapore. https://doi.org/10.1007/978-981-99-5022-5_15
  • Naser, A.Z., Deiab, I., and Darras, B.M. (2021). Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review. RSC Advances 11, 17151-17196. https://doi.org/10.1039/d1ra02390j
  • Nygaard, D., Yashchuk, O., Noseda, D.G., Araoz, B., and Hermida, É.B. (2021). Improved fermentation strategies in a bioreactor for enhancing poly (3-hydroxybutyrate)(PHB) production by wild type Cupriavidus necator from fructose. Heliyon 7(1), e05979. https://doi.org/10.1016/j.heliyon.2021.e05979
  • Obruca, S., Sedlacek, P., and Koller, M. (2021). The underexplored role of diverse stress factors in microbial biopolymer synthesis. Bioresource Technology 326, 124767. https://doi.org/10.1016/j.biortech.2021.124767
  • Obruca, S., Sedlacek, P., Koller, M., Kucera, D., and Pernicova, I. (2018). Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnology advances 36(3), 856-870. https://doi.org/10.1016/j.biotechadv.2017.12.006
  • Pacheco, N., Herrera-Pool, E., Castañeda-Valbuena, D., Cuevas-Bernardino, J.C., Castillo-Aguilar, C. C., Andueza-Noh, R., and Ayora-Talavera, T. (2023). Phytochemical Compounds from Xcatik (Capsicum annuum L.) Chili Tissues Extracted by Uae: Biological Activity and Phenolic Profile. Journal of the Mexican Chemical Society 67(3), 200-212. https://doi.org/10.29356/jmcs.v67i3.1970
  • Paikra, S.K., Panda, J., Sahoo, G., and Mishra, M. (2022). Characterization of exopolysaccharide derived from Enterobacter ludwigii and its possible role as an emulsifier. 3 Biotech, 12(9), 212. https://doi.org/10.1007/s13205-022-03279-z
  • Rakkan, T., Paichid, N., and Sangkharak, K. (2023). The Integration of Methylene Blue Decolorization with Polyhydroxyalkanoate (PHA) Production Using Enterobacter Strain TS1L. Journal of Polymers and the Environment 31(3), 1202-1208. https://doi.org/10.1007/s10924-022-02692-y
  • Rawoof, S.A.A., Kumar, P.S., Vo, D.V.N., Devaraj, K., Mani, Y., Devaraj, T., and Subramanian, S. (2021). Production of optically pure lactic acid by microbial fermentation: A review. Environmental Chemistry Letters 19, 539-556. https://doi.org/10.1007/s10311-020-01083-w
  • Redondo-Cuenca, A., Herrera-Vázquez, S.E., Condezo-Hoyos, L., Gómez-Ordóñez, E., and Rupérez, P. (2021). Inulin extraction from common inulin-containing plant sources. Industrial Crops and Products 170, 113726. https://doi.org/10.1016/j.indcrop.2021.113726
  • Sampaio, I.C.F., Crugeira, P.J.L., de Azevedo Santos Ferreira, J., de Almeida Santos, J., dos Santos, J.N., Ramos-de-Souza and de Almeida P.F. (2021). Surfactant/Alkali Stress Effect in Exopolysaccharide Production by Xanthomonas and Enterobacter Strains. In Functional Properties of Advanced Engineering Materials and Biomolecules, (F.A. La Porta and C.A. Taft, C.A eds.), Pp. 695-717. Springer, Cham. https://doi.org/10.1007/978-3-030-62226-8_24
  • Samrot, A.V., Samanvitha, S.K., Shobana, N., Renitta, E.R., Senthilkumar, P., Kumar, S.S., Abirami, S., Dhiva, S., Bavanilatha, M., Prakash, P., Saigeetha, S., Shree, K.S., and Thirumurugan, R. (2021). The synthesis, characterization and applications of polyhydroxyalkanoates (PHAs) and PHA-based nanoparticles. Polymers 13(19), 3302. 10.3390/polym13193302. https://doi.org/10.3390/polym13193302
  • Saratale, R.G., Cho, S.K., Saratale, G.D., Kadam, A.A., Ghodake, G.S., Kumar, M., Bharavaga, R., N., Kumar, G., Kim, D.S., Mulla, S.I., and Shin, H.S. (2021). A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. Bioresource Technology 325, 124685.https://doi.org/10.1016/j.biortech.2021.124685
  • Schmid, M., Raschbauer, M., Song, H., Bauer, C., and Neureiter, M. (2021). Effects of nutrient and oxygen limitation, salinity and type of salt on the accumulation of poly (3-hydroxybutyrate) in Bacillus megaterium uyuni S29 with sucrose as a carbon source. New Biotechnology 61, 137-144. https://doi.org/10.1016/j.nbt.2020.11.012
  • Shahid, S., Razzaq, S., and Farooq, R. (2020). Polyhydroxyalkanoates: Next generation natural biomolecules and a solution for the world’s future economy. International Journal og Biological Macromolecules. Macromol. 166, 297–321. https://doi.org/10.1016/j.ijbiomac.2020.10.187
  • Shyam, K.P., Rajkumar, P., Ramya, V., Sivabalan, S., Kings, A. J., and Miriam, L. M. (2021). Exopolysaccharide production by optimized medium using novel marine Enterobacter cloacae MBB8 isolate and its antioxidant potential. Carbohydrate Polymer Technologies and Applications 2, 100070. https://doi.org/10.1016/j.carpta.2021.100070
  • Soto, L.R., Thabet, H., Maghembe, R., Gameiro, D., Van‐Thuoc, D., Dishisha, T., and Hatti‐Kaul, R. (2021). Metabolic potential of the moderate halophile Yangia sp. ND199 for co‐production of polyhydroxyalkanoates and exopolysaccharides. Microbiology Open 10, e1160. https://doi.org/10.1002/mbo3.1160
  • Tripathi A.D., Paul, V., Agarwal, A., Sharma, R., Hashempour-Baltork, F., Rashidi, L., and Darani, K. (2021). Production of polyhydroxyalkanoates using dairy processing waste A review. Bioresource Technology 326, 124735. https://doi.org/10.1016/j.biortech.2021.124735
  • Vega-Vidaurri, J.A., Hernández-Rosas, F., Ríos-Corripio, M.A., Loeza-Corte, J.M., Rojas-López, M., and Hernández-Martínez, R. (2022). Coproduction of polyhydroxyalkanoates and exopolysaccharide by submerged fermentation using autochthonous bacterial strains. Chemical Papers 76(4), 2419-2429. https://doi.org/10.1007/s11696-021-02046-3
  • Vicente, D., Proença, D.N., and Morais, P.V. (2023). The Role of Bacterial Polyhydroalkanoate (PHA) in a Sustainable Future: A Review on the Biological Diversity. International Journal of Environmental Research and Public Health 20(4), 2959. https://doi.org/10.3390/ijerph20042959
  • Xu, Z., Li, X., Hao, N., Pan, C., de la torre, L. and Ahamed, A. (2019). Kinetic understanding of nitrogen supply condition on biosynthesis of polyhydroxyalkanoate from benzoate by Pseudomonas putida KT2440. Bioresource Technology 273, 538–544. https://doi.org/10. 1016/j.biortech.2018.11.046.
  • Yadav, B., Talan, A., Tyagi, R.D., and Drogui, P. (2021). Concomitant production of value-added products with polyhydroxyalkanoate (PHA) synthesis: A review. Bioresource Technology 337, 125419. https://doi.org/10.1016/j.biortech.2021.125419
  • Zhao, D., Jiang, J., Liu, L., Wang, S., Ping, W., and Ge, J. (2021). Characterization of exopolysaccharides produced by Weissella confusa XG-3 and their potential biotechnological applications. International Journal of Biological Macromolecules 178, 306-315. https://doi.org/10.1016/j.ijbiomac.2021.02.182
  • Zhou, W., Colpa, D.I., Geurkink, B., Euverink, G.J.W., and Krooneman, J. (2022). The impact of carbon to nitrogen ratios and pH on the microbial prevalence and polyhydroxybutyrate production levels using a mixed microbial starter culture. Science of the Total Environment 811, 152341. https://doi.org/10.1016/j.scitotenv.2021.152341