Vol. 23, No. 2 (2024), Bio24223 https://doi.org/10.24275/rmiq/Bio24223


In vitro and in vivo antifungal activity of chitosan and identification of potentially toxigenic fungi in stored maize of Nayarit, Mexico


 

Authors

E. Martínez-Batista, C. González-Arias, R.M. Velázquez-Estrada, J.A. Herrera-González, P. Gutiérrez-Martínez


Abstract

Maize is the main food in Mexico since it constitutes the food base of millions of Mexicans. However, production is affected by the presence of mycotoxin-producing fungi, such as Aspergillus, Penicillium, and Fusarium. In order to prevent the growth of these pathogens, the efficacy of high molecular weight commercial chitosan was evaluated to prolong the conservation and quality of the grain during storage. The maize kernels were provided from the state of Nayarit, Mexico. The fungi A. niger, P. funiculosum, and F. verticillioides were isolated and identified morphologically and molecularly. The in vitro chitosan concentrations evaluated were 0.5, 1.0, 1.5, and 2.0%. The highest concentration inhibited mycelial growth by 74.97, 93.19 and 89.79% for A. niger, P. funiculosum, and F. verticillioides, respectively. The results demonstrated that commercial chitosan with a high molecular weight can effectively inhibit the growth of mycotoxin-producing fungus in preserved maize kernels.


Keywords

Maize, stored fungi, Aspergillus niger, Penicillium funiculosum, Fusarium verticillioides, chitosan.


References

  • Abrehamed, S., Manoj, V.R., Hailu, M., Chen, Y.-Y., Lin, Y.-C. and Chen, Y.-P. (2023). Aflatoxins: Source, Detection, Clinical Features and Prevention. Processes 11(204), 1-20. https://doi.org/10.3390/pr11010204
  • Akonda, M.R., Yasmin, M. and Hossain, I. (2016). Incidence of seed-borne mycoflora and their effects on germination of maize seeds. International Journal of Agronomy and Agricultural Research 8, 87–92.
  • Baltussen, T.J., Zoll, J., Verweij, P.E. and Melchers, W.J. (2019). Molecular Mechanisms of Conidial Germination in Aspergillus spp. Microbiology and Molecular Biology Reviews 84(1), 1–31. https://doi.org/10.1128/mmbr.00049-19
  • Carvalho, T., Costa, M., Rosa, L.H., de Oliveira, A.M. and de Oliveira, E.N. (2020). Penicillium citrinum and Penicillium mallochii: New phytopathogens of orange fruit and their control using chitosan. Carbohydrate Polymers 234, 1-31. https://doi.org/10.1016/j.carbpol.2020.115918
  • Debnath, D., Samal, I., Mohapatra, C., Routray, S., Kesawat, M.S. and Labanya, R. (2022). Chitosan: An Autocidal Molecule of Plant Pathogenic Fungus. Life 12(1908), 1-14.  https://doi.org/10.3390/life12111908
  • Deng, L.Z., Tao, Y., Mujumdar, A.S., Pan, Z., Chen, C., Yang, X.H., Liu, Z.L., Wang, H. and Xiao, H.W. (2020). Recent advances in non-thermal decontamination technologies for microorganisms and mycotoxins in low-moisture foods. In Trends in Food Science and Technology 106, 104–112. https://doi.org/10.1016/j.tifs.2020.10.012
  • Dewi, R. and Nur, R.M. (2018). Antifungal Activity of Chitosan on Aspergillus spp. International Journal of Bioengineering & Biotechnology 2(4), 24–30.
  • Elgharably, A. and Nafady, A. (2021). Inoculation with Arbuscular mycorrhizae, Penicillium funiculosum and Fusarium oxysporum enhanced wheat growth and nutrient uptake in the saline soil. Rhizosphere 18, 1-18. https://doi.org/10.1016/j.rhisph.2021.100345
  • El-araby, A., El Ghadraoui, L. and Errachidi, F. (2022) Usage of biological chitosan against the contamination of post-harvest treatment of strawberries by Aspergillus niger. Frontiers in Sustainable Food Systems 6, 1-15. doi: 10.3389/fsufs.2022.881434
  • Erasto, R., Kilasi, N. and Madege, R.R. (2023). Prevalence and Management of Phytopathogenic Seed-Borne Fungi of Maize. Seeds 2, 2–13. https://doi.org/10.3390/seeds2010003
  • FAOSTAT- Cultivos y producción de ganadería. (2022). Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/es/#data/QCL
  • Fuentes‐Aragón, D., Silva‐Rojas, H.V., Guarnaccia, V., Mora‐Aguilera, J.A., Aranda‐Ocampo, S., Bautista‐Martínez, N. and Téliz‐Ortíz, D. (2020). Colletotrichum species causing anthracnose on avocado fruit in Mexico: Curent Status. Plant Pathology 69(8), 1513–1528. https://doi.org/10.1111/ppa.13234
  • Gálvez-Iriqui, A.C., Cortez-Rocha, M.O., Burgos-Hernández, A., Calderón-Santoyo, M., Argüelles-Monal, W.M. and Plascencia-Jatomea, M. (2019). Synthesis of chitosan biocomposites loaded with pyrrole-2-carboxylic acid and assessment of their antifungal activity against Aspergillus niger. Applied Microbiology and Biotechnology 103(7), 1-16. https://doi.org/10.1007/s00253-019-09670-w
  • Godana, E.A., Yang, Q., Wang, K., Zhang, H., Zhang, X., Zhao, L., Abdelhai, M.H. and Guillaume Legrand, N.N. (2020). Bio-control activity of Pichia anomala supplemented with chitosan against Penicillium expansum in postharvest grapes and its possible inhibition mechanism. Lwt - Food Science and Technology 124, 1-9. https://doi.org/10.1016/j.lwt.2020.109188
  • González-Jartín, J.M., Ferreiroa, V., Rodríguez-Cañás, I., Alfonso, A., Sainz, M.J., Aguín, O., Vieytes, M.R., Gomes, A., Ramos, I. and Botana, L.M. (2022). Occurrence of mycotoxins and mycotoxigenic fungi in silage from the north of Portugal at feed-out. International Journal of Food Microbiology 365, 1-10.  https://doi.org/10.1016/j.ijfoodmicro.2022.109556
  • Gulbis, K., Bankina, B., Bimšteina, G., Neusa-Luca, I., Roga, A. and Fridmanis, D. (2016). Fungal Diversity of Maize (Zea Mays L.) Grains. Rural Sustainability Research 35, 2–6. https://doi.org/10.1515/plua-2016-0001
  • Gutiérrez-Martínez, P., Ramos-Guerrero, A., González-Estrada, R.R., Romanazzi, G. and Landi, L. (2020). Effects of chitosan in the control of postharvest anthracnose of soursop (Annona muricata) Fruit. Revista Mexicana de Ingeniera Quimica 19(1), 99–108. https://doi.org/10.24275/rmiq/Bio527
  • Herrera-González, J.A., Hernández-Sánchez, D.A., Bueno-Rojas, D.A., Ramos-Bell, S., Velázquez-Estrada, R.M., Bautista-Rosales, P.U. and Gutiérrez-Martinez, P. (2022). Effect of commercial chitosan on in vitro inhibition of Colletotrichum siamense, fruit quality and elicitor effect on postharvest avocado fruit. Revista Mexicana de Ingeniería Química 21, 1-12. https://doi.org/10.24275/rmiq/Bio2706
  • IARC-Working Group on the Evaluation of Carcinogenic Risks to Humans and International Agency for Research on Cancer. (1993). Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. World Health Organization, International Agency for Research on Cancer.
  • Juárez-Vázquez, S.B., Silva-Rojas, H., Rebollar-Alviter, A., Maidana-Ojeda, M., Osnaya-González, M. and Fuentes-Aragón, D. (2019). Phylogenetic and morphological identification of Colletotrichum godetiae, a novel pathogen causing anthracnose on loquat fruits (Eriobotrya japonica). Journal of Plant Diseases and Protection 126(6), 593–598. https://doi.org/10.1007/s41348-019-00264-2
  • Kociecka, J. and Liberacki, D. (2021). The Potential of Using Chitosan on Cereal Crops in the Face of Climate Change. Plants 10 (1160). 1-27. https://doi.org/10.3390/plants10061160
  • Kolawole, O., Meneely, J., Petchkongkaew, A. and Elliott, C. (2021). A review of mycotoxin biosynthetic pathways: associated genes and their expressions under the influence of climatic factors. Fungal Biology Reviews 37, 8–26. https://doi.org/10.1016/j.fbr.2021.04.003
  • Lücking, R., Aime, M. C., Robbertse, B., Miller, A.N., Ariyawansa, H.A., Aoki, T., Cardinali, G., Crous, P.W., Druzhinina, I.S., Geiser, D.M., Hawksworth, D.L., Hyde, K.D., Irinyi, L., Jeewon, R., Johnston, P.R., Kirk, P.M., Malosso, E., May, T.W., Meyer, W., Opik, M., Marc-Stadler, V.R., Thines, M., Vu, D., Yurkov, A.M., Zhang, N. and Schoch, C.L. (2020). Unambiguous identification of fungi: Where do we stand and how accurate and precise is fungal DNA barcoding?. IMA Fungus 11(1). https://doi.org/10.1186/s43008-020-00033-z
  • Mohamed, A. A., El-Hefny, M., El-Shanhorey, N.A. and Ali, H. M. (2020). Foliar Application of Bio-Stimulants Enhancing the Production and the Toxicity of Origanum majorana Essential Oils Against Four Rice Seed-Borne Fungi. Molecules 25(10), 1-19. https://doi.org/10.3390/molecules25102363
  • Moumni, M., Brodal, G. and Romanazzi, G. (2023). Recent innovative seed treatment methods in management of seedborne pathogens. Food security 15(5), 1-18. https://doi.org/10.1007/s12571-023-01384-2
  • Muhammad, H. K., Apeh, D.O., Muhammad, H. L., Olorunmowaju, Y.B., Ifeji, E. and Makun, H.A. (2019). Mycoflora of Maize in Niger State, Nigeria. Advanced Research in Life Sciences 3(1), 40–45. https://doi.org/10.2478/arls-2019-0009
  • Mukarram, M., Ali, J., Dadkhah-Aghdash, H., Kurjak, D., Kacık, F. and Durkovic, J. (2023). Chitosan-induced biotic stress tolerance and crosstalk with phytohormones, antioxidants, and other signalling molecules. Frontiers in Plant Science 14, 1-14. doi: 10.3389/fpls.2023.1217822
  • Odebode, A., Adekunle, A., Stajich, J. and Adeonipekun, P. (2020). Airborne fungi spores distribution in various locations in Lagos, Nigeria. Environmental Monitoring and Assessment 192(2), 1-14. https://doi.org/10.1007/s10661-019-8038-3
  • Odjo, S., Palacios-Rojas, N., Burgueño, J., Corrado, M., Ortner, T. and Verhulst, N. (2022). Hermetic storage technologies preserve maize seed quality and minimize grain quality loss in smallholder farming systems in Mexico. Journal of Stored Products Research 96, 1-10. https://doi.org/10.1016/j.jspr.2022.101954
  • Orzali, L., Allagui, M.B., Chaves-Lopez, C., Molina-Hernandez, J.B., Moumni, M., Mezzalama, M. and Romanazzi, G. (2023). Basic Substances and Potential Basic Substances: Key Compounds for a Sustainable Management of Seedborne Pathogens. Horticulturae 9, 1-16. https://doi.org/10.3390/horticulturae9111220
  • Pabón-Baquero, D., Velázquez-del Valle, M.G., Evangelista-Lozano, S., León-Rodriguez, R. and Hernández-Lauzardo, A.N. (2015). Chitosan effects on phytopathogenic fungi and seed germination of Jatropha curcas L. Revista Chapingo Serie Ciencias Forestales y Del Ambiente 21(3), 241–253. https://doi.org/10.5154/r.rchscfa.2014.10.051
  • Pfliegler, W.P., Pócsi, I., Győri, Z. and Pusztahelyi, T. (2020). The Aspergilli and their mycotoxins: metabolic interactions with plants and the soil biota. Frontiers in Microbiology 10, 1–21. https://doi.org/10.3389/fmicb.2019.02921
  • Pitt, J.I. and Hocking, A.D. (2009). Fungi and food spoilage. In: Fungi and Food Spoilage. (https://doi.org/10.1007/978-0-387-92207-2), Springer, New York.
  • Pitt, J.I., Wild, C.P., Baan, R.A., Gelderblom, W.C., Miller, D.J., Riley, R.T. and Wu, F. (2012). Improving public health through mycotoxin control. IARC Scientific Publication 158, 1-168.
  • Qi, Z., Tian, L., Zhang, H., Lei, Y. and Tang, F. (2023). Fungal community analysis of hot spots in bulk maize under different storage conditions. LWT – Food Science and Technology 182, 1-11. https://doi.org/10.1016/j.lwt.2023.114819
  • Ramos-Bell, S., Hernández-Montiel, L.G., Velázquez-Estrada, R.M., Sánchez-Burgos, J.A., Bautista-Rosales, P.U. and Gutiérrez-Martínez, P. (2022). Additive effect of alternative treatment to chemical control of Botrytis cinerea in blueberries. Revista Mexicana de Ingeniería Química 21, 1–13. https://doi.org/10.24275/rmiq/Bio2839
  • Ravichandra, N. (2022). Postharvest Plan Pathology. CRC press, New York.
  • Rayón-Díaz, E., Birke-Biewendt, A.B., Velázquez-Estrada, R.M., González-Estrada, R.R., Ramírez-Vázquez, M., Rosas-Saito, G.H. and Gutierrez-Martinez, P. (2021). Sodium silicate and chitosan: an alternative for the in vitro control of Colletotrichum gloeosporioides isolated from papaya (Carica papaya L.). Revista BioCiencias 8, 1-13. https://doi.org/10.15741/revbio.08.e1059
  • Rodríguez-Guzmán, C.A., González-Estrada, R.R., Bautista-Baños, S. and Gutiérrez-Martínez, P. (2019). Efecto del quitosano en el control de Alternaria sp. en plantas de jitomate en invernadero. Revista Especializada En Ciencias Químico-Biológicas 22, 1–7. https://doi.org/10.22201/fesz.23958723e.2018.0.161
  • Saberi, R., Vatankhah, M., Hassanisaadi M., Shafiei- Hematabad, Z. and Kennedy, J. (2024). Advancements in coating technologies: Unveiling the potential of chitosan for the preservation of fruits and vegetables. International Journal of Biological Macromolecules 254, 1-14. https://doi.org/10.1016/j.ijbiomac.2023.127677
  • Segura-Palacios, M.A., Correa-Pacheco, Z.N., Corona-Rangel, M.L., Martinez-Ramirez, O.C., Salazar-Piña, D.A., Ramos-García, M.d.L. and Bautista-Baños, S. (2021). Use of Natural Products on the Control of Aspergillus flavus and Production of Aflatoxins In Vitro and on Tomato Fruit. Plants 10, 1-9. https://doi.org/10.3390/plants10122553
  • SIAP-Producción Agrícola. (2022). Servicio de Información Agroalimentaria y Pesquera. https://nube.siap.gob.mx/cierreagricola/
  • Sirohi, R., Tarafdar, A., Kumar Gaur, V., Singh, S., Sindhu, R., Rajasekharan, R., Madhavan, A., Binod, P., Kumar, S. and Pandey, A. (2021). Technologies for disinfection of food grains: Advances and way forward. Food Research International 145, 1-17. https://doi.org/10.1016/j.foodres.2021.110396
  • Sun, Y., Shang, L., Xia, X., Meng, D., Ren, Y., Zhang, J., Yao, M., Zhou, X. and Wang, Y. (2021). Cellular uptake of chitosan and its role in antifungal action against Penicillium expansum. Carbohydrate Polymers 269, 1-8. https://doi.org/10.1016/j.carbpol.2021.118349
  • Torre-hernández, M.E., Sánchez-rangel, D., Galeana-sánchez, E. and Plasencia, J. (2014). Fumonisinas –síntesis y función en la interacción Fusarium verticillioides - maíz. Revista Especializada En Ciencias Químico-Biológicas 17, 77–91.
  • Ventura-Aguilar, R.I., Gónzalez-Andrade, C., Hernández-López, M., Correa-Pacheco, Z.N.,  Teksür, P.K., Ramos-García, M.d.L. and Bautista-Baños, S. (2022). Effect of Biodegradable Coatings on the Growth of Aspergillus flavus In Vitro, on Maize Grains, and on the Quality of Tortillas during Storage. Molecules 27, 1-16. https://doi.org/10.3390/molecules27144545
  • Wadzani, D.P., Alao, S.E. and Musa, H. (2019). Effect of Plant Extracts on Sporulation of Aspergillus Niger and Penicillium chrysogenum from Sunflower (Helianthus annuus L.) Seeds. Journal of Food Stability 2, 43–48. https://doi.org/10.36400/J.Food.Stab.2.1.2019-0010
  • Wan, C., Kahramanoglu, I. and Okatan, V. (2021). Application of plant natural products for the management of postharvest diseases in fruit. Folia Horticulturae 33, 203-215. DOI: 10.2478/fhort-2021-0016
  • Warham, E.J., Butler, L.D., and Sutton, R. C. (2003). Ensayos para la semilla de maíz y de trigo. Manual de Laboratorio, CYMMYT, 1-182.
  • Yadav, A.N., Verma, P., Kumar, V., Sangwan, P., Mishra, S., Panjiar, N., Gupta, V.K. and Saxena, A.K. (2018). Biodiversity of the Genus Penicillium in different habitats. In: New and Future Developments in Microbial Biotechnology and Bioengineering, (https://doi.org/10.1016/B978-0-444-63501-3.00001-6), Pp. 1-16. Elsevier, India.