Vol. 23, No. 2 (2024), Bio24241 https://doi.org/10.24275/rmiq/Bio24241


Isolation and characterization of microbial diversity in phenanthrene-degrading consortia in a pollution zone in Ciudad del Carmen, Mexico


 

Authors

K. García-Uitz, J.C. Cruz, M.G. León-Pech, I. Moreno-Andrade, G. Giácoman-Vallejos, C. Ponce-Caballero


Abstract

Human health is adversely affected by polycyclic aromatic hydrocarbons. In fossil fuels, phenanthrene is a simple polycyclic aromatic hydrocarbon with elevated carcinogenicity, teratogenicity, mutagenicity, and ecotoxicity. Several bacterial species have been isolated from soil and sediment samples to assess their ability to utilize phenanthrene. The aim of this study was to isolate and characterize microbial diversity in phenanthrene-degrading consortia. Four aerobic bacterial consortia were isolated from both seawater and sediments from Ciudad del Carmen, Mexico. Synthetic seawater was enriched with phenanthrene at a concentration of 100 mg L-1, serving as the growth medium to assess the pollutant's degradation potential. Bacterial richness was gauged using the 16S rRNA gene. The biodegradation data revealed a range of 58% to 75% phenanthrene degradation within a span of 7 days. The specific microbial growth rate (µ) ranged from 0.015 to 0.031 h-1, and degradation rates (DR) ranged from 0.732 to 1.94 (mg L-1) / h. The most predominant phyla observed were Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes. Within the Proteobacteria phylum, the dominant classes were Gammaproteobacteria and Alphaproteobacteria. The primary operational taxonomic units (OTUs) were identified as Alcalinovorax venustensis and Halomonas sp.


Keywords

consortium, pyrosequencing, proteobacteria, phenanthrene-degrading.


References

  • Aguilar-Vilchis R., Hernández-Rodríguez I.A., González-Blanco G., Hernández-Soto L.M., Aguirre-Garrido J.F., Beristain-Cardoso R. (2023). Characterization of sediments from the upper basin of the Lerma River, Mexico: Microbiome and biomethane potential. Revista Mexicana de Ingeniería Química 22,2, 1375-1388. https://doi.org/10.24275/rmiq/IA2330
  • Alonso-Gutierrez, J., Figueras, A., Albaigas, J., Jiménez, N., Vinas, M., Solanas, A.M., and Novoa, B. (2009). Bacterial Communities from Shoreline Environments (Costa da Morte, Northwestern Spain) Affected by the Prestige Oil Spill. Applied and Environmental Microbiology, 75, (11) 3407-3418. https://doi.org/10.1128/AEM.01776-08
  • Andersson, A.F., Riemann, L., and Bertilsson, S. (2009). Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities. The ISME Journal, 4, (2) 171-181. https://doi.org/10.1038/ismej.2009.108
  • Edgar RC. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460. https:/doi: 10.1093/bioinformatics/btq461
  • Edgar R.C., Haas B.J., Clemente J. C., Quince C. and Knight R. (2011). UCHIIME improves sensitivity and speed of chimera detection. Oxford Journal of Bioinformatics 27, (16) 2194-2200. https://doi: 10.1093/bioinformatics/btr381.
  • Eze, M.O. (2021). Metagenome analysis of a Hydrocarbon-Degrading Bacterial Consortium Reveals the Specific Roes of BTEX Biodegraders. Genes 1, 2 (1):98. https://doi: 10.3390/genes12010098.
  • Fernandez-Martinez, J., Pujalte, M.a.J., Garcia-Martinez, J.S., Mata, M., Garay, E., and Rodríguez-Valera, F. (2003). Description of Alcanivorax venustensis sp. nov. and reclassification of Fundibacter jadensis DSM 12178T (Bruns and Berthe-Corti 1999) as Alcanivorax jadensis comb. nov., members of the emended genus Alcanivorax. International Journal of Systematic and Evolutionary Microbiology, 53, (1) 331-338. https://doi: 10.1099/ijsem.0.006319.
  • Fortunato, C.S., Herfort, L., Zuber, P., Baptista, A.M., and Crump, B.C. (2012). Spatial variability overwhelms seasonal patterns in bacterioplankton communities across a river to ocean gradient. The ISME Journal, 6, (3) 554-563. https://doi.org/10.1038/ismej.2011.135
  • Gilbert, J.A., Field, D., Swift, P., Newbold, L., Oliver, A., Smyth, T., Somerfield, P.J., Huse, S., and Joint, I. (2009). The seasonal structure of microbial communities in the Western English Channel. Environmental Microbiology, 11, (12) 3132-3139. https://doi: 10.1111/j.1462-2920.2009.02017.x.
  • Gomes, N.C.M., Manco, S.n.C., Pires, A.C.l., Gonalves, S.F., Calado, R., Cleary, D.F.R., and Loureiro, S. (2013). Richness and composition of sediment bacterial assemblages in an Atlantic port environment. Science of The Total Environment, 452453, (0) 172-180. https://doi: 10.1016/j.scitotenv.2013.02.017.
  • Govarthanan, M, Ashraf YZ. Khalifa, S. Kamala-Kannan, P. Srinivasan, T. Selvankumar, K. Selvam, and Woong Kim. (2020). Significance of allochthonous brackish water Halomonas sp. on biodegradation of low and high molecular weight polycyclic aromatic hydrocarbons. Chemosphere. 243. https://doi: 10.1016/j.chemosphere.2019.125389.
  • Gu, H.  K. Yan, Q. You, Y. Chen, Y. Pan, H. Wang, L. Wu, and J. Xu (2021). Soil indigenous microorganisms weaken the synergy of Massilia sp. WF1 and Phanerochaete chrysosporium in phenanthrene biodegradation. Science Total Environmental. https://doi: 10.1016/j.scitotenv.2021.146655. 
  • Harayama, S., Kasai, Y., and Hara, A. (2004). Microbial communities in oil-contaminated seawater. Current Opinion in Biotechnology, 15, (3) 205-214. https://doi: 10.1016/j.copbio.2004.04.002.
  • Janbandhu, A. and Fulekar, M.H. 2011. Biodegradation of phenanthrene using adapted microbial consortium isolated from petrochemical contaminated environment. Journal of Hazardous Materials, 187, 333-340. https://doi.org/10.1016/j.jhazmat.2011.01.034
  • Juhasz, A.L. and Naidu, R. 2000. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. International Biodeterioration and Biodegradation, 45, 57-88. https://doi.org/10.1016/S0964-8305(00)00052-4
  • Kasai, Y., Kishira, H., Syutsubo, K., and Harayama, S. 2001. Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident. Environmental Microbiology, 3, (4) 246-255. https://doi.org/10.1046/j.1462-2920.2001.00185.x
  • Kirchman, D.L., Cottrell, M.T., and Lovejoy, C. 2010. The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environmental Microbiology, 12, (5) 1132-1143. https://doi: 10.1111/j.1462-2920.2010.02154.x
  • Kuppusamy, S., Thavamani, P., Megharaj, M., Lee, Y.B., and Naidu, R., (2016). Polyaromatic hydrocarbon (PAH) degradation potential of a new acid tolerant, diazotrophic Psolubilizing and heavy metal resistant bacterium Cupriavidus sp. MTS-7 isolated from long-term mixed contaminated soil. Chemosphere 162, 31e39.
    • https://doi: 10.1016/j.chemosphere.2016.07.052
  • Laas, P., Simm, J., Lips, I., and Metsis, M. 2014. Spatial variability of winter bacterioplankton community composition in the Gulf of Finland (the Baltic Sea). Journal of Marine Systems, 129, (0) 127-134. https://doi: 10.1016/j.jmarsys.2013.07.016
  • Leys, N.M.E.J., Ryngaert, A., Bastiaens, L., Verstraete, W., Top, E.M., and Springael, D. 2004. Occurrence and Phylogenetic Diversity of Sphingomonas Strains in Soils Contaminated with Polycyclic Aromatic Hydrocarbons. Applied and Environmental Microbiology, 70, (4) 1944-1955. https://doi: 10.1128/AEM.70.4.1944-1955.2004
  • Loreto-Muñoz, C.D., López-Avilés, G., De la Cruz-Leyva, M.C. Martin-García, A.R. Almendariz-Tapia, F.J. (2024). Sulfidogenic activity related to microbial diversity in a biological system employed for sulfate-rich wastewater treatment. Revista Mexicana de Ingeniería Química, 23, 1. https://doi.org/10.24275/rmiq/IA24167
  • Lozupone, C.A. and Knight, R. (2007). Global patterns in bacterial diversity. Proceedings of the National Academy of Sciences, 104, (27) 11436-11440. https://doi.org/10.1073/pnas.0611525104
  • Lyman, J. and Fleming, R.H. (1940).  Composition of sea water.  Journal of Marine Research, 3, 134-146. https://elischolar.library.yale.edu/journal_of_marine_research/566
  • Martin, F., Torelli, S.p., Le Paslier, D., Barbance, A.s., Martin-Laurent, F., Bru, D., Geremia, R., Blake, G., and Jouanneau, Y. (2012). Betaproteobacteria dominance and diversity shifts in the bacterial community of a PAH-contaminated soil exposed to phenanthrene. Environmental Pollution, 162, (0) 345-353. https://doi: 10.1016/j.envpol.2011.11.032
  • Meyer, F., Paarmann, D., D'Souza, M., Olson, R., Glass, E.M., Kubal, M., Paczian, T., Rodriguez, A., Stevens, R., Wilke, A., Wilkening, J., and Edwards, R.A. (2008). The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics, 9, (1) 386. https://doi: 10.1186/1471-2105-9-386
  • Mrozik, A. and Piotrowska-Seget, Z. (2010). Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiological Research, 165, (5) 363-375. https://doi.org/10.1016/j.micres.2009.08.001
  • Ouyang, J. (2004). Phenanthrene graphical pathway map. The University of Minnesota Biocatalysis/Biodegradation Database. [Online]. Disponible en: http://umbbd. ahc.umn.edu/pha/pha_image_map_1.html.
  • Patel, V., Cheturvedula, S., and Madamwar, D. (2012). Phenanthrene degradation by Pseudoxanthomonas sp. DMVP2 isolated from hydrocarbon contaminated sediment of Amlakhadi canal, Gujarat, India. Journal of Hazardous Materials, 201, (0) 43-51. https://doi.org/10.1016/j.jhazmat.2011.11.002
  • Pedetta, A., Pouyte, K., Herrera Seitz, M.a.K., Babay, P.A., Espinosa, M., Costagliola, M., Studdert, C.A., and Peressutti, S.R. (2013). Phenanthrene degradation and strategies to improve its bioavailability to microorganisms isolated from brackish sediments. International Biodeterioration & Biodegradation, 84, (0) 161-167. https://doi.org/10.1016/j.ibiod.2012.04.018
  • Pommier, T., Neal, P.R., Gasol, J.M., Coll, M., Acinas, S.G., and Pedrós-Alió, C. (2010). Spatial patterns of bacterial richness and evenness in the NW Mediterranean Sea explored by pyrosequencing of the 16S rRNA. Aquatic Microbial Ecology, 61, (3) 221-233. https://doi.org/10.3354/ame01484
  • Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J., and Glockner, F.O. (2007). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research, 35, (21) 7188-7196. https://doi: 10.1093/nar/gkm864.
  • Quince, C., Lanzen, A., Davenport, R., and Turnbaugh, P. (2011). Removing Noise From Pyrosequenced Amplicons. BMC Bioinformatics, 12, (1) 38. https://doi: 10.1186/1471-2105-12-38.
  • Rojas-Herrera, R., Narváez-Zapata, J., Zamudio-Maya, M., and Mena-Martínez, M. (2008). A Simple Silica-based Method for Metagenomic DNA Extraction from Soil and Sediments. Molecular Biotechnology 40, (1) 13-17. https://doi.org/10.1007/s12033-008-9061-8
  • Romero, M.C., Cazau, M.C., Giorgieri, S., and Arambarri, A.M. (1998). Phenanthrene degradation by microorganisms isolated from a contaminated stream. Environmental Pollution 101, (3) 355-359. https://doi.org/10.1016/S0269-7491(98)00056-6
  • Sambrook, J. and Ruseell, D. Molecular cloning: a laboratory manual. 3er. ed. (2001).  Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • Schloss, P.D. and Handelsman, J. (2005). Introducing DOTUR, a Computer Program for Defining Operational Taxonomic Units and Estimating Species Richness. Applied and Environmental Microbiology 71, (3) 1501-1506.  https://doi: 10.1128/AEM.71.3.1501-1506.2005.
  • Schneiker, S., dos Santos, V.A.M., Bartels, D., Bekel, T., Brecht, M., Buhrmester, J., Chernikova, T.N., Denaro, R., Ferrer, M., Gertler, C., Goesmann, A., Golyshina, O.V., Kaminski, F., Khachane, A.N., Lang, S., Linke, B., McHardy, A.C., Meyer, F., Nechitaylo, T., Puhler, A., Regenhardt, D., Rupp, O., Sabirova, J.S., Selbitschka, W., Yakimov, M.M., Timmis, K.N., Vorholter, F.J., Weidner, S., Kaiser, O., and Golyshin, P.N. (2006). Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nature Biotechnology 24, (8) 997-1004. https://doi.org/10.1038/nbt1232
  • Tam, N.F.Y., Guo, C.L., Yau, W.Y., and Wong, Y.S. (2002). Preliminary study on biodegradation of phenanthrene by bacteria isolated from mangrove sediments in Hong Kong. Marine Pollution Bulletin 45 (112) 316-324. https://doi: 10.1016/s0025-326x(02)00108-x
  • Tian, L., Ma, P., and Zhong, J.J. (2002). Kinetics and key enzyme activities of phenanthrene degradation by Pseudomonas mendocina. Process Biochemistry 37, (12) 1431-1437. https://doi.org/10.1016/S0032-9592(02)00032-8
  • Wang, Y. M. Nie, Z. Diwu, F. Chang, H. Nie, B. Zhang, X. Bai, and Q. Yin (2021). Toxicity evaluation of the metabolites derived from the degradation of phenanthrene by one of a soil ubiquitous PAHs-degrading strain Rhodococcus qingshengii FF. Journal of Hazardous Materials 5: 415:125657. https://doi: 10.1016/j.jhazmat.2021.125657
  • Wu, Q.L., Zwart, G., Schauer, M., Kamst-van Agterveld, M.P., and Hahn, M.W. (2006). Bacterioplankton Community Composition along a Salinity Gradient of Sixteen High-Mountain Lakes Located on the Tibetan Plateau, China. Applied and Environmental Microbiology 72, (8) 5478-5485. https://doi: 10.1128/AEM.00767-06
  • Yakimov, M.M., Denaro, R., Genovese, M., Cappello, S., D´Auria, G., Chernikova, T.N., Timmis, K.N., Golyshin, P.N., and Giluliano, L. (2005). Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environmental Microbiology 7, (9) 1426-1441. https://doi: 10.1111/j.1462-5822.2005.00829.x
  • Zakaria, N. N., Roslee, A. F. A., Gomez-Fuentes, C., Zulkharnain, A., Abdulrasheed, M., Sabri, S. and Ahmad, S. A. (2020). Kinetic studies of marine psychrotolerant microorganisms capable of degrading diesel in the presence of heavy metals. Revista Mexicana de Ingeniería Química, 19(3), 1375-1388. https://doi.org/10.24275/rmiq/Bio1072
  • Zhao, O., Zhang, X., Dong Feng, S., Zhang, L.X., Shi, W., Yang, Z., Miao Chen, M., Dan Fang, X., (2017). Starch-enhanced degradation of HMW PAHs by Fusarium sp. In an aged polluted soil from a coal mining area. Chemosphere 174, 774e780. https://doi.org/10.1016/j.chemosphere.2016.12.026
  • Zeng, J., Lin, X., Zhang, J., Li, X., (2010). Isolation of polycyclic aromatic hydrocarbons (PAHs)-degrading Mycobacteriums pp. and the degradation in soil. Journal of Hazardous Materials 183, 718e723. https://doi: 10.1016/j.jhazmat.2010.07.085