Vol. 23, No. 2 (2024), IE24235 https://doi.org/10.24275/rmiq/IE24235


Soft chemistry synthesis of size-controlled ZnO nanostructures as photoanode for dye-sensitized solar cell


 

Authors

R. García-Molina, G.G. Suárez-Velázquez, W. J. Pech-Rodríguez, L.C. Ordóñez, P. C. Melendez-Gonzalez, N.M. Sánchez-Padilla, D. González-Quijano


Abstract

This study focuses on the systematic soft chemistry synthesis of ZnO nanoparticles as a photoanode for dye-sensitized solar cells. A microwave-assisted heated polyol route was used to dissociate zinc chloride (ZnCl2) in the presence of different NaOH concentrations and under low water concentrations. The obtained nanomaterial was examined by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectroscopy and Scanning Electron Microscopy (SEM). The results confirmed O and Zn bond formation in the fresh material. The anode photocatalytic activity was evaluated in a dye-sensitized solar cell fabricated by electrophoretic deposition. The I-V curve of the as-prepared cell anodes reveals that NaOH high concentration improves the current densities resulting in better electrical efficiencies. The photoluminescence measurements indicate that the high NaOH concentration-prepared sample has significant emissions in the visible region. Dislocation density calculations from XRD data indicate that ZnO samples prepared with high NaOH concentrations have more crystallographic defects like oxygen vacancies or interstitial Zn. Similarly, changes in the E2 (high) phonon Raman mode intensity in ZnO samples suggest that oxygen vacancy formation is favored at high NaOH concentrations. This study demonstrated a fast synthesis of ZnO nanoparticles with photocatalytic properties in developing materials with sensitive defect-related properties for solar cell applications.


Keywords

soft chemical synthesis, nanoparticles, photocatalysts, oxygen vacancy, solar cell.


References

  • Aggelopoulos, C. A., Dimitropoulos, M., Govatsi, A., Sygellou, L., Tsakiroglou, C. D., & Yannopoulos, S. N. (2017). Influence of the surface-to-bulk defects ratio of ZnO and TiO2 on their UV-mediated photocatalytic activity. Applied Catalysis B: Environmental, 205(1), 292-301. https://doi.org/10.1016/j.apcatb.2016.12.023       
  • Arjunan, T. V., & Senthil, T. S. (2013). Review: Dye sensitised solar cells. Materials Technology, 28(1-2), 9-14. https://doi.org/10.1179/1753555712Y.0000000040
  • Atanacio-Sánchez, X., Pech-Rodríguez, W. J., Armendáriz-Mireles, E. N., Castillo-Robles, J. A., Meléndez-González, P. C., & Rocha-Rangel, E. (2020). Improving performance of ZnO flexible dye sensitized solar cell by incorporation of graphene oxide. Microsystem Technologies, 26(12), 3591-3599. https://doi.org/10.1007/s00542-020-04820-x
  • Baruah, S., Mahmood, M., Myint, M. T. Z., Bora, T., & Dutta, J. (2010). Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods. Beilstein journal of nanotechnology, 1(1), 14-20. https://doi.org/10.3762/bjnano.1.3
  • Bindu, P., & Thomas, S. (2014). Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. Journal of Theoretical and Applied Physics, 8(4), 123-134. https://doi.org/10.1007/s40094-014-0141-9
  • Bogomolov, K., & Ein-Eli, Y. (2023). Alkaline Ni−Zn Rechargeable Batteries for Sustainable Energy Storage: Battery Components, Deterioration Mechanisms, and Impact of Additives. ChemSusChem, n/a(n/a), e202300940. https://doi.org/10.1002/cssc.202300940
  • Chen, D., Wang, Z., Ren, T., Ding, H., Yao, W., Zong, R., & Zhu, Y. (2014). Influence of Defects on the Photocatalytic Activity of ZnO. The Journal of Physical Chemistry C, 118(28), 15300-15307. https://doi.org/10.1021/jp5033349
  • Chen, X., Liu, T., Li, Z., & Yin, X.-T. (2023). Recent developments in metal oxide semiconductors for n-Butanol detection. Materials Today Chemistry, 33, 101690. https://doi.org/10.1016/j.mtchem.2023.101690
  • Chen, X., Tang, Y., & Liu, W. (2017). Efficient Dye-Sensitized Solar Cells Based on Nanoflower-like ZnO Photoelectrode. Molecules, 22(8), 1284. http://www.mdpi.com/1420-3049/22/8/1284
  • Cooper, J. K., Ling, Y., Longo, C., Li, Y., & Zhang, J. Z. (2012). Effects of Hydrogen Treatment and Air Annealing on Ultrafast Charge Carrier Dynamics in ZnO Nanowires Under in Situ Photoelectrochemical Conditions. The Journal of Physical Chemistry C, 116(33), 17360-17368. https://doi.org/10.1021/jp304428t
  • Daiko, Y., Schmidt, J., Kawamura, G., Romeis, S., Segets, D., Iwamoto, Y., & Peukert, W. (2017). Mechanochemically induced sulfur doping in ZnO via oxygen vacancy formation. Physical Chemistry Chemical Physics, 19(21), 13838-13845. http://dx.doi.org/10.1039/C7CP01489A
  • Dong, Z. W., Zhang, C. F., Deng, H., You, G. J., & Qian, S. X. (2006). Raman spectra of single micrometer-sized tubular ZnO. Materials Chemistry and Physics, 99(1), 160-163. https://doi.org/10.1016/j.matchemphys.2005.10.005
  • Dou, X., Sabba, D., Mathews, N., Wong, L. H., Lam, Y. M., & Mhaisalkar, S. (2011). Hydrothermal Synthesis of High Electron Mobility Zn-doped SnO2 Nanoflowers as Photoanode Material for Efficient Dye-Sensitized Solar Cells. Chemistry of Materials, 23(17), 3938-3945. https://doi.org/10.1021/cm201366z
  • Du, B., Yao, Y., Shen, M., Luo, Z., Li, M., & Gao, Q. (2021). Synthesis and photocatalytic activity of dumbbell-like mesoporous ZnO micro-nanomaterials with tetrasulfonatomethyl-n-hexyl calix [4]resorcinarene tetrasodium salt as hard-soft template. Journal of Physics and Chemistry of Solids, 150(1), 109871. https://doi.org/10.1016/j.jpcs.2020.109871
  • Du, Y.-P., Zhang, Y.-W., Sun, L.-D., & Yan, C.-H. (2008). Efficient Energy Transfer in Monodisperse Eu-Doped ZnO Nanocrystals Synthesized from Metal Acetylacetonates in High-Boiling Solvents. The Journal of Physical Chemistry C, 112(32), 12234-12241. https://doi.org/10.1021/jp802958x
  • El Faroudi, L., Saadi, L., Barakat, A., Mansori, M., Abdelouahdi, K., & Solhy, A. (2023). Facile and Sustainable Synthesis of ZnO Nanoparticles: Effect of Gelling Agents on ZnO Shapes and Their Photocatalytic Performance. ACS Omega, 8(28), 24952-24963. https://doi.org/10.1021/acsomega.3c01491
  • Fiévet, F., Ammar-Merah, S., Brayner, R., Chau, F., Giraud, M., Mammeri, F., . . . Viau, G. (2018). The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chemical Society Reviews, 47(14), 5187-5233.  http://dx.doi.org/10.1039/C7CS00777A
  • Fukushima, H., Kozu, T., Shima, H., Funakubo, H., Uchida, H., Katoda, T., & Nishida, K. (2015, 24-27 May 2015). Evaluation of oxygen vacancy in ZnO using Raman spectroscopy. Paper presented at the 2015 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF), International Symposium on Integrated Functionalities (ISIF), and Piezoelectric Force Microscopy Workshop (PFM).
  • Fukushima, H., Uchida, H., Funakubo, H., Katoda, T., & Nishida, K. (2017). Evaluation of oxygen vacancies in ZnO single crystals and powders by micro-Raman spectroscopy. Journal of the Ceramic Society of Japan, 125(6), 445-448. https://doi.org/10.2109/jcersj2.16262
  • Gaikwad, S. S., Gandhi, A. C., Pandit, S. D., Pant, J., Chan, T.-S., Cheng, C.-L., . . . Wu, S. Y. (2014). Oxygen induced strained ZnO nanoparticles: an investigation of Raman scattering and visible photoluminescence. Journal of Materials Chemistry C, 2(35), 7264-7274. http://dx.doi.org/10.1039/C4TC00566J
  • Haq, I.-u., Khan, M. I., Irfan, M., Fatima, M., Somaily, H. H., Elqahtani, Z. M., & Alwadai, N. (2023). Increase the current density and reduce the defects of ZnO by modification of the band gap edges with Cu ions implantation for efficient, flexible dye-sensitized solar cells (FDSSCs). Ceramics International, 49(18), 29622-29629. https://doi.org/10.1016/j.ceramint.2023.06.188
  • Jagadeesh, A., Veerappan, G., Devi, P. S., Unni, K. N. N., & Soman, S. (2023). Synergetic effect of TiO2/ZnO bilayer photoanodes realizing exceptionally high VOC for dye-sensitized solar cells under outdoor and indoor illumination. Journal of Materials Chemistry A, 11(27), 14748-14759. https://doi.org/10.1039/D3TA02698A
  • Jayaprabakar, J., Sri Hari, N. S., Badreenath, M., Anish, M., Joy, N., Prabhu, A., . . . Kumar, J. A. (2024). Nano materials for green hydrogen production: Technical insights on nano material selection, properties, production routes and commercial applications. International Journal of Hydrogen Energy, 52, 674-686. https://doi.org/10.1016/j.ijhydene.2023.06.109
  • Jung, M.-H. (2017). High efficiency dye-sensitized solar cells based on the ZnO nanoparticle aggregation sphere. Materials Chemistry and Physics, 202(1), 234-244. https://doi.org/10.1016/j.matchemphys.2017.09.034
  • Khan, S., Ansari, A. J., & Kazmi, S. A. (2022, 24-25 June 2022). ZnO-rGO-Ag Photoanode for Dye-sensitized Solar cells. Paper presented at the 2022 2nd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET).
  • Kumar, V. B., Kumar, K., Gedanken, A., & Paik, P. (2014). Facile synthesis of self-assembled spherical and mesoporous dandelion capsules of ZnO: efficient carrier for DNA and anti-cancer drugs. Journal of Materials Chemistry B, 2(25), 3956-3964. http://dx.doi.org/10.1039/C4TB00416G
  • Li, C., Lv, Y., Guo, L., Xu, H., Ai, X., & Zhang, J. (2007). Raman and excitonic photoluminescence characterizations of ZnO star-shaped nanocrystals. Journal of Luminescence, 122(1), 415-417. https://doi.org/10.1016/j.jlumin.2006.01.173
  • Li, X., Wang, Y., Liu, W., Jiang, G., & Zhu, C. (2012). Study of oxygen vacancies′ influence on the lattice parameter in ZnO thin film. Materials Letters, 85(1), 25-28. https://doi.org/10.1016/j.matlet.2012.06.107
  • Lizama-Tzec, F. I., Garcia-Rodriguez, R., Rodriguez-Gattorno, G., Canto-Aguilar, E. J., Vega-Poot, A. G., Heredia-Cervera, B. E., Villanueva-Cab, J., Morales-Flores, N., Pal, U., Oskam, G. (2016). Influence of morphology on the performance of ZnO-based dye-sensitized solar cells. RSC Advances, 6(44), 37424-37433. http://dx.doi.org/10.1039/C5RA25618F
  • Mabate, T. P., Maqunga, N. P., Ntshibongo, S., Maumela, M., & Bingwa, N. (2023). Metal oxides and their roles in heterogeneous catalysis: special emphasis on synthesis protocols, intrinsic properties, and their influence in transfer hydrogenation reactions. SN Applied Sciences, 5(7), 196. doi:10.1007/s42452-023-05416-6
  • Mahmood, M. A., Baruah, S., & Dutta, J. (2011). Enhanced visible light photocatalysis by manganese doping or rapid crystallization with ZnO nanoparticles. Materials Chemistry and Physics, 130(1), 531-535. https://doi.org/10.1016/j.matchemphys.2011.07.018
  • Nandi, P., & Das, D. (2022). Morphological variations of ZnO nanostructures and its influence on the photovoltaic performance when used as photoanodes in dye sensitized solar cells. Solar Energy Materials and Solar Cells, 243, 111811. https://doi.org/10.1016/j.solmat.2022.111811
  • Ntwaeaborwa, O. M., Mofokeng, S. J., Kumar, V., & Kroon, R. E. (2017). Structural, optical and photoluminescence properties of Eu3+ doped ZnO nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 182(1), 42-49. https://doi.org/10.1016/j.saa.2017.03.067
  • Oxandale, S. W., Reinke, C., Das, S. R., & El-Kady, I. (2023). Enhanced thermoelectric performance via quantum confinement in a metal oxide semiconductor field effect transistor for thermal management. Communications Materials, 4(1), 85. https://doi.org/10.1038/s43246-023-00397-w
  • Prajapat, K., Dhonde, M., Sahu, K., Bhojane, P., Murty, V. V. S., & Shirage, P. M. (2023). The evolution of organic materials for efficient dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 55, 100586. https://doi.org/10.1016/j.jphotochemrev.2023.100586
  • Quek, J.-A., Sin, J.-C., Lam, S.-M., Mohamed, A. R., & Zeng, H. (2020). Bioinspired green synthesis of ZnO structures with enhanced visible light photocatalytic activity. Journal of Materials Science: Materials in Electronics, 31(2), 1144-1158. https://doi.org/10.1007/s10854-019-02626-w
  • Ragavendran, C., Kamaraj, C., Jothimani, K., Priyadharsan, A., Anand Kumar, D., Natarajan, D., & Malafaia, G. (2023). Eco-friendly approach for ZnO nanoparticles synthesis and evaluation of its possible antimicrobial, larvicidal and photocatalytic applications. Sustainable Materials and Technologies, 36, e00597. https://doi.org/10.1016/j.susmat.2023.e00597
  • Rahman, M., Bashar, M. S., Rahman, M. L., & Chowdhury, F. I. (2023). Comprehensive review of micro/nanostructured ZnSnO3: characteristics, synthesis, and diverse applications. RSC Advances, 13(44), 30798-30837. doi:10.1039/D3RA05481K
  • Raji, R., & Gopchandran, K. G. (2017). ZnO nanostructures with tunable visible luminescence: Effects of kinetics of chemical reduction and annealing. Journal of Science: Advanced Materials and Devices, 2(1), 51-58. https://doi.org/10.1016/j.jsamd.2017.02.002
  • Ramya, M., Nideep, T. K., Nampoori, V. P. N., & Kailasnath, M. (2021). The impact of ZnO nanoparticle size on the performance of photoanodes in DSSC and QDSSC: a comparative study. Journal of Materials Science: Materials in Electronics, 32(3), 3167-3179. https://doi.org/10.1007/s10854-020-05065-0
  • Ramzan Parra, M., & Haque, F. Z. (2015). Optical investigation of various morphologies of ZnO nanostructures prepared by PVP-assisted wet chemical method. Optics and Spectroscopy, 118(5), 765-772. https://doi.org/10.1134/S0030400X15030182
  • Rana, S. B. (2017). Influence of CTAB assisted capping on the structural and optical properties of ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 28(18), 13787-13796. https://doi.org/10.1007/s10854-017-7224-8
  • Sehgal, P., & Narula, A. K. (2021). Improved optical, electrochemical and photovoltaic properties of dye-sensitized solar cell composed of rare earth-doped zinc oxide. Journal of Materials Science: Materials in Electronics, 32(12), 16612-16622. https://doi.org/10.1007/s10854-021-06216-7
  • Shah, M. A. K. Y., Lund, P. D., & Zhu, B. (2023). Toward next-generation fuel cell materials. iScience, 26(6), 106869. https://doi.org/10.1016/j.isci.2023.106869
  • Shashanka, R., Esgin, H., Yilmaz, V. M., & Caglar, Y. (2020). Fabrication and characterization of green synthesized ZnO nanoparticle based dye-sensitized solar cells. Journal of Science: Advanced Materials and Devices, 5(2), 185-191. https://doi.org/10.1016/j.jsamd.2020.04.005
  • Sufyan, M., Mehmood, U., Qayyum Gill, Y., Nazar, R., & Ul Haq Khan, A. (2021). Hydrothermally synthesize zinc oxide (ZnO) nanorods as an effective photoanode material for third-generation Dye-sensitized solar cells (DSSCs). Materials Letters, 297(1), 130017. https://doi.org/10.1016/j.matlet.2021.130017
  • Supin, K. K., ParvathyNamboothiri, P. M., & Vasundhara, M. (2023). Enhanced photocatalytic activity in ZnO nanoparticles developed using novel Lepidagathis ananthapuramensis leaf extract. RSC Advances, 13(3), 1497-1515. https://doi.org/10.1039/D2RA06967A
  • Taglieri, G., Daniele, V., Maurizio, V., Merlin, G., Siligardi, C., Capron, M., & Mondelli, C. (2023). New Eco-Friendly and Low-Energy Synthesis to Produce ZnO Nanoparticles for Real-World Scale Applications. Nanomaterials, 13(17). https://doi.org/10.3390/nano13172458
  • Velazquez-Gonzalez, C. E., Armendariz-Mireles, E. N., Pech-Rodriguez, W. J., González-Quijano, D., & Rocha-Rangel, E. (2019). Improvement of dye sensitized solar cell photovoltaic performance by using a ZnO-semiconductor processed by reaction bonded. Microsystem Technologies, 1(12), 4567–4575. https://doi.org/10.1007/s00542-019-04476-2
  • Vicencio Garrido, M. A., Portillo Araiza, O. R., Chavez Portillo, M., Portillo, O., & Lozano Espinoza, M. (2023). Crystalline native defects in ZnO analyzed by photoluminescence applying Maxwell-Boltzmann statistics in the visible region. Revista Mexicana de Física, 69(2 Mar-Apr), 021304 021301–021310. https://doi.org/10.31349/RevMexFis.69.021304
  • Vivek, S., Preethi, S., & Babu, K. S. (2022). Interfacial effect of mono (Cu, Ni) and bimetallic (Cu–Ni) decorated ZnO nanoparticles on the sunlight assisted photocatalytic activity. Materials Chemistry and Physics, 278, 125669. https://doi.org/10.1016/j.matchemphys.2021.125669
  • Wallace, R., Brown, A. P., Brydson, R., Wegner, K., & Milne, S. J. (2013). Synthesis of ZnO nanoparticles by flame spray pyrolysis and characterisation protocol. Journal of Materials Science, 48(18), 6393-6403. https://doi.org/10.1007/s10853-013-7439-x
  • Wang, J., Chen, R., Xia, Y., Wang, G., Zhao, H., Xiang, L., & Komarneni, S. (2016). Cost-effective large-scale synthesis of oxygen-defective ZnO photocatalyst with superior activities under UV and visible light. Ceramics International, 43(1), 1870-1879. https://doi.org/10.1016/j.ceramint.2016.10.146
  • Wibowo, A., Marsudi, M. A., Amal, M. I., Ananda, M. B., Stephanie, R., Ardy, H., & Diguna, L. J. (2020). ZnO nanostructured materials for emerging solar cell applications. RSC Advances, 10(70), 42838-42859. doi:10.1039/D0RA07689A
  • Yang, X., Deng, Y., Yang, H., Liao, Y., Cheng, X., Zou, Y., . . . Deng, Y. (2023). Functionalization of Mesoporous Semiconductor Metal Oxides for Gas Sensing: Recent Advances and Emerging Challenges. Advanced Science, 10(1), 2204810. https://doi.org/10.1002/advs.202204810
  • Yao, N., Huang, J., Fu, K., Deng, X., Ding, M., Shao, M., & Xu, X. (2015). Enhanced light harvesting of dye-sensitized solar cells with up/down conversion materials. Electrochimica Acta, 154(1), 273-277. https://doi.org/10.1016/j.electacta.2014.12.095
  • Yousif, Q. A., Mahdi, K. M., & Alshamsi, H. A. (2021). Enhanced photovoltaic performance of dye-sensitized solar cell based on ZnO nanoparticles and ZnO/graphene nanocomposites. Journal of the Chinese Chemical Society, 68(9), 1637-1643. https://doi.org/10.1002/jccs.202000382
  • Zapata-Cruz, J. R., Armendáriz-Mireles, E. N., Rocha-Rangel, E., Suarez-Velazquez, G., González-Quijano, D., & Pech-Rodríguez, W. J. (2019). Implementation of Taguchi method to investigate the effect of electrophoretic deposition parameters of SnO2 on dye sensitised solar cell performance. Materials Technology, 34(9), 549-557. https://doi.org/10.1080/10667857.2019.1591730
  • Zatirostami, A. (2021). Fabrication of dye-sensitized solar cells based on the composite TiO2 nanoparticles/ZnO nanorods: Investigating the role of photoanode porosity. Materials Today Communications, 26(1), 102033. https://doi.org/10.1016/j.mtcomm.2021.102033