Vol. 23, No. 3 (2024), Alim24249 https://doi.org/10.24275/rmiq/Alim24249


Food industrial effluent treatment for water recovery and reuse. Techno, economic and environmental analysis


 

Authors

I. Montero-Guadarrama, C. Muro, A. D. Calvo, V. Díaz-Blancas, K. Hernández, O.A. Monroy Hermosillo


Abstract

The treatment of an industrial effluent was evaluated as an investment project for implementation at an industrial level to recover drinking water. The evaluation included a technical, economic, and environmental analysis.
The project was technically viable, fulfilling the following aspects. i) The effluent constitutes a source of drinking water production and a flow rate of 250 m3/day is available. ii) Through effluent treatment, 50% of clean water is recovered. iii) The recovered water has drinking water quality; therefore, it can be used in industrial activities. iv) The treatment system for water recovery is scalable at an industrial level. v) The technology that integrates the treatment system to recover water is commercially available for implementation at an industrial level.
The environmental analysis of the water recovery project was also feasible, generating a positive impact. In turn, the negative impact index was low since the main emission is non-toxic sludge.

Also, the project was economically viable. The effluent treatment to produce drinking water at industrial level has a cost of $1.5 US /m3. The initial economic investment is $565,569.00 US and the investment recovery period is 2.3 years.


Keywords

Lactic acid bacteria, fermented sausage, microbiological properties, sucuk, starter culture.


References

  • Aldana-Espitia, N. C., Botello-Álvarez, J. E., Rivas-García, P., Cerino-Córdova, F. J., Bravo-Sánchez, M. G., Abel-Seabra, J. E., and Estrada-Baltazar, A. (2017). Environmental impact mitigation during the solid waste management in an industrialized city in Mexico: An approach of life cycle assessment. Revista Mexicana de Ingeniería Química, 16(2), 563-580. doi:https://www.redalyc.org/articulo.oa?id=62052087021
  • Ankoliya, D., Mugdal , A., Sinha, M. K., Davies, P., Park, K., Rodríguez-Alegre, R., Patel, V., and Patel, J. (2023). Techno-economic analysis of integrated bipolar membrane electrodialysis and batch reverse osmosis for water and chemical recovery from daury wastewater. J Clean Prod, 420. doi:https://doi.org/10.1016/j.jclepro.2023.138264
  • APHA. (2023). Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association, Water Environmental Federation (24th ed.). (A. Press, Ed.) Washington DC: Lipps WC, Braun-Howland EB, Baxter TE.
  • Ashraf, A., Ramamurthy, R., and Rene, E. R. (2021). Wastewater treatment and rsource recovery technologies in the brewery industry: Current trends and emerging practices. Sustainable Energy Technologies and Assessments, 47, 1-14. doi:https://doi.org/10.1016/j.seta.2021.101432
  • Arvanitoyannis, I. S. (2008). ISO 14040: Life Cycle Assessment (LCA) - Principles and Guidelines. Waste Managements for the Food Industries, 97-132. doi:https://doi.org/10.1016/B978-012373654-3.50006-7
  • Bhargava, N., Bahadur, N., and Kansal, A. (2023). Techno-economic assessment of integrated photochemical AOPs for sustainable treatment of textile and dyeing wastewater. Journal of Water Process Engineering, 56.doi:https://doi.org/10.1016/j.jwpe.2023.104302
  • Ćetković , J., Knežević , M., Lakić , S., Žarković, M., Vujadinović , R., Živković , A., and Cvijović , J. (2022). Financial and Economic Investment Evaluation of Wastewater Treatment Plant. Water, 14(122), 1-23. doi:https://doi.org/10.3390/w14010122
  • Chen, Z., Wang, D., Dao, G., Shi, Q., Yu, T., Guo, F., and Wu, G. (2021). Environmental impact of the effluents discharging from full-scale wastewater treatment plants evaluated by a hybrid fuzzy approach. Science of The Total Environment, 790, 1-10. doi:https://doi.org/10.1016/j.scitotenv.2021.148212.
  • Ciobanu, R., Teodosiu, C., Almeida, C. V., Agostinho, F., and Giannetti , B. F. (2022). Sustainability Analysis of a Municipal Wastewater Treatment Plant through Emergy Evaluation. Sustainability, 14(11(6461)). doi:https://doi.org/10.3390/su14116461.
  • Dévora-Isiordia, G. E., López-Mercado, M.E., Fimbres-Weihs, G. A., Álvarez-Sánchez, J., and Astorga-Trejo, S. (2016). Desalación por ósmosis inversa y su aprovechamiento en agricultura en el valle del Yaqui, Sonora, México. Tecnología y ciencias del agua, 7(3), 155-169. Recuperado en 04 de abril de 2024, de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-24222016000300155&lng=es&tlng=es.
  • Dévora-Isiordia, G. E., Villegas-Peralta, H. A., Piña-Martínez, H. A., Sánchez-Duarte, R. G., and Álvarez-Sánchez, J. (2023a). Determination of the polarization in a reverse osmosis plant to desalinate sea water. Revista Mexicana de Ingeniería Química, 22(3), 1-11. https://doi.org/https://doi.org/10.24275/rmiq/Proc2349.
  • Dévora-Isiordia, G. E., Cásares-De la Torre, C. A., Morales-Mendívil, D. P., Montoya-Pizeno, R., Velázquez-Limón, N., Aguilar-Jiménez, J. A., and Ríos-Arriola, J. (2023b). Evaluation of Concentration Polarization Due to the Effect of Feed Water Temperature Change on Reverse Osmosis Membranes. Membranes, 13(1), 1-16. https://doi.org/https://doi.org/10.3390/membranes13010003.
  • Dincer, A. R., Cifci, D. I., Cinkaya, D. D., Dulger, E., and Karaca, F. (2021). Treatment of organic peroxide containing wastewater and water recovery by fenton-adsorption and fenton-nanofiltration processes. Journal of Environmental Management, 299, 1-9. doi:https://doi.org/10.1016/j.jenvman.2021.113557.
  • Doddapaneni, T. R. K.C., Kikas, T. (2023). Integrating torrefaction of pulp industry sludge with anaerobic digestion to produce bioenergy and biochemicals: Techno-economic and environmental feasibility analysis. Chemical Engineering Journal Advances, 14, 100463. https://doi.org/10.1016/j.ceja.2023.100463.
  • Farago, M., Damgaard, A., Madsen, J. A., Andersen, J. K., Thornberg, D., Andersen, M. H., and Rygaard, M. (2021). From wastewater treatment to water resource recovery: Environmental and economic impacts of full-scale implementation. Water Research, 204, 1-14. doi:https://doi.org/10.1016/j.watres.2021.117554
  • Gonzales-Condori, E. G., Avalos-López, G., Gonzales-Condori, J., Mujica-Guzmán, A., Terán-Hilares, R., Briceño, G., Quispe-Aviles, J. M., Parra-Ocampo, P. J., and Villanueva-Salas, J. A. (2023). Avocado seed powder residues as a promising bio-adsorbent for color removal textile wastewater. Revista Mexicana de Ingeniería Química, 22(3), 1-14.
  • doi:http://rmiq.org/iqfvp/Numbers/V22/No3/IA2370.pdf
  • Grisales, C. M., Salazar, L. M., and Garcia, D. P. (2019). Treatment of synthetic dye baths by Fenton processes: evaluation of their environmental footprint through life cycle assessment. Environmental Science and Pollution Research, 26, 4300-4311. doi:https://link.springer.com/article/10.1007/s11356-018-2757-9.
  • Hao, X., Furumai, H., and Chen, G. (2015). Resource recovery: Efficient approaches to sustainable water and wastewater treatment. Water research, 86(1), 83-84. doi:https://doi.org/10.1016/j.watres.2015.10.063
  • Hao, X., Wang, X., Liu, R., Li, S., van Loosedrecht, M. C., and Jiang, H. (2019). Environmental impact of resource recovery from wastewater treatment plants. Water Reseach, 790, 268-277. doi:https://doi.org/10.1016/j.watres.2019.05.068.
  • Hernandez, K., Muro, C., Monroy, O., Diaz, V., Alvarado, Y., and Diaz, M. C. (2022). Membrane Water Treatment for Drinking Water Production from an Industrial Effluent Used in the Manufacturing of Food Additives. Membranes, 12(742), 1-22. doi:https://doi.org/10.3390/membranes12080742
  • Hernandez, K., Muro, C., Ortega, R. E., Velazquez, S., and Riera, F. (2019). Water recovery by treatment of food inductry wastewater using membrane processes. Environmental Technology, 42(5), 775-788. doi:https://doi.org/10.1080/09593330.2019.1645739
  • Hofste, R., Schleifer, L., and Reig, P. (2019). WRI México. Retrieved Marzo 20, 2023, from https://wrimexico.org/bloga/una-cuarta-parte-de-la-poblaci%C3%B3n-mundial-padece-escasez-de-agua
  • Kehrein, P., Jafari, M., Slagt, M., Cornelissen, E., Osseweijer, P., Posada, J., and van Loosdrecht, M. (2021). A techno-economic analysis of membrane-based advanced treatment processes for the reuse of municipal wastewater. Water Reuse, 11(4), 705-725. doi:https://doi.org/10.2166/wrd.2021.016
  • Khanzada, N. K., Jamal, K. S., and Davies, P. A. (2017). Performance evaluation of reverse osmosis (RO) pre-treatment technologies for in-land brackish water treatment. Desalination, 406, 44-50. doi:https://doi.org/10.1016/j.desal.2016.06.030
  • Li, K., Liu, Q., Fang, F., Wu, X., Xin, J., Sun, S., Wei, Y., Ruan, R., Chen, P., Wang, Y., and Addy, M. (2020). Influence of nanofiltration concentrate recirculation on perfomance and economic feasibility of a pilot-scale membrane bioreactor-nanofiltration hybrid process for textile wastewater treatment with high water recovery. Journal of Cleaner Production, 261, 1-11. doi:https://doi.org/10.1016/j.jclepro.2020.121067
  • Mendoza-Basilio, C. A., Yee-Madeira, H., Ramírez-Rodríguez, T., and Colindres-Bonilla, P. (2017). Oxidation of textile dye reactive yellow 84 in aqueous solution in order to reuse treated water. Revista Mexicana de Ingeniería Química, 16(2), 581-589. doi:http://www.redalyc.org/articulo.oa?id=62052087022
  • Muñoz, I., Peral, J., Ayllón, J. A., Malato, S., Martin, M. J., Perrot, J. Y., Vincent, M., and Domenech, X. (2007). Life-Cycle Assessment of Coupled Advanced Oxidation-Biological Process for Wastewater Treatment: Comparison with Granular Activated Carbon Adsorption. Environmental Engineering Science, 24(5), 638-651. doi:https://doi.org/10.1089/ees.2006.0134.
  • Nazia, S., Sahu, N., Jegatheesan, V., Bhargava, S. K., and Sridhar, S. (2021). Integration of ultrafiltration membrane process with chemical coagulation for proficent treatment of old industrial landfill leachte. Chemical Engineering Journal, 412. doi:https://doi.org/10.1016/j.cej.2021.128598
  • Oke, E. O., Aru, O. E., Nzeribe, I., Odeyi, O., Okolo, B. I., Adeyi, J. A., Salam, K., Adeniran, J. A., and. Araromi, D. O. (2023). Computer-aided batch process design, techno-economic and uncertainty analyses of bio-clarified water recovery from south-eastern Nigerian brewery wastewater. Clean Environmental System, 11, 1-9. doi:https://doi.org/10.1016/j.cesys.2023.100138
  • Ozbey, B., Omwene, P. I., Yagcioglu, M., Balcik, C., Karagunduz, A., Keskinler, B., and Dizge, N. (2020). Treatment of organized industrial zone wastewater by microfiltration/reverse osmosis membrane process for water recovery: From lab to pilot scale. Journal of Water Process Engineering, 38, 1-12. doi:https://doi.org/10.1016/j.jwpe.2020.101646
  • Panagopoulos, A., Haralambous, K.-J., and Loizidou, M. (2019). Desalination brine disposal methods and treatment technologies - A review. Science of the Total Environment, 693, 1-23. doi:https://doi.org/10.1016/j.scitotenv.2019.07.351
  • Peláez-León, J. D. (2010). Evaluación del Impacto Ambiental de proyectos de Desarrollo. Retrieved from Biblioteca digital SEMARNAT: https://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/Libros2011/CD001413.pdf
  • Petrinic, I., Korenak, J., Povodnik, D., and Helix, C. (2015). A feasibility study of ultrafiltration/reverse osmosis (UF/RO)-based wastewater treatment and reuse in the metal finishing industry. Journal of Cleaner Production, 101, 292-300. doi:https://doi.org/10.1016/j.jclepro.2015.04.022
  • Prado de Nicolás, A., Molina-García, A., García-Bermejo J. T., Vera-García, F. Desalination, minimal and zero liquid discharge powered by renewable energy sources: Current status and future perspectives. Renewable and Sustainable Energy Reviews, 187, 113733. https://doi.org/10.1016/j.rser.2023.113733
  • Pryce, D., Kapelan, Z., and Fayyaz, A. M. (2022). Economic evaluation of a small wastewater treatment plant under different design and operation scenarios by life cycle costing. Development Engineering, 7, 1-10. doi:https://doi.org/10.1016/j.deveng.2022.100103
  • Pryshlakivsky, J., and Searcy, C. (2013). Fifteen years of ISO 14040: a review. Journal of Cleaner Production, 57, 115-123. doi:http://dx.doi.org/10.1016/j.jclepro.2013.05.038
  • Qi, M., Yang, Y., Zhang, X., Zhang, X., Wang, M., Zhang, W., Lu, X., and Tong, Y. (2020). Pollution reduction and operating cost analysis of municipal wastewater treatment in China and implication for future wastewater management. Journal of Cleaner Production, 253. doi:https://doi.org/10.1016/j.jclepro.2020.120003
  • Revollo-Fernández, D. A., Rodríguez-Tapia, L., and Morales-Novelo, J. A. (2020). Economic value of water in the manufacturing industry located in the Valley of Mexico Basin, Mexico. Water Resource and Economics, 30. doi:https://doi.org/10.1016/j.wre.2019.01.004
  • Robles-Lizárraga, A., Martínez-Macías, M. d., Encinas-Guzmán, M. I., Larraguibel-Aganza, O. d., Rodríguez-López, J., & Dévora-Isiordia, G. E. (2020). Design of reverse osmosis desalination plant in Puerto Peñasco, Sonora, México. Desalination and Water Treatment. 175, 1-10. https://doi.org/doi: 10.5004/dwt.2020.24739.
  • Rodríguez, R., Espada, J. J., Pariente, M. I., Melero, J. A., Martínez, F., and Molina, R. (2016). Comparative life cycle assessment (LCA) study of heterogeneous and homogeneous Fenton processes for the treatment of pharmaceutical wastewater. Journal of Cleaner Production, 124, 21-29. doi:https://doi.org/10.1016/j.jclepro.2016.02.064
  • SEMARNAT. (2022). Norma Oficial Mexicana NOM-001-SEMARNAT-2021, Que establece los límites máximos permisibles de contaminantes en las descargas residuales en curpos receptores propiedad de la nación. México: Diario Oficial de la Federación.
  • SEMARNAT. (2022). NOM-127-SSA1-2021. Agua para uso y consumo humano. Límites permisibles de la calidad del agua. México: Diario Oficial de la Federación.
  • Shukla, A., Prakash, O., Biswas, R., Vijay, R., and Pal, S. (2022). Design and preliminary techno-economic assessment of a pilot scale pharmaceutical wastewater treatment system for ammonia removal and recovery of fetilizer. Journal of Environmental Management, 321. doi:https://doi.org/10.1016/j.jenvman.2022.115898
  • Soto-Vázquez, A., Sánchez-Galindo, P., Barraza-Madrigal, J. A., and Guzmán-Castañeda, J. I. (2023). Electrocoagulation as a possible treatment for wastewater polluted with industrial lubricant oils. Revista Mexicana de Ingeniería Química, 22(3), 1-8. doi:http://rmiq.org/iqfvp/Numbers/V22/No2/IA2313.pdf
  • Tripathi, P., Tiwari, S., Tiwari, H., Sonwani, R. K., and Singh, R. S. (2023). Techno-economic assessment of coupling ozonation and biodegradation process for the dye wastewater treatment. Journal of Water Process Engineering, 56. doi:https://doi.org/10.1016/j.jwpe.2023.104286
  • Trotochaud, L., Andrus, R. M., Tyson, K. J., Miller, G. H., Welling, C. M., Donaghy, P. E.,  Incardona, J. D., Evans, W. A., Smith, P. K., Oriard, T. L., Norris, I. D., Stoner, B. R., Guest, J. S., and Hawkins, B. T. (2020). Laboratory Demonstration and Preliminary Techno-Economic Analysis of an Onsite Wastewater Treatment System. Environmental Science and Technology, 54(24), 16147-16155. doi:https://doi.org/10.1021/acs.est.0c02755
  • Turek, M., Mitko, K., Piotrowski, K., Dydo, P., Laskowska, E., and Jakóbik-Kolon, A. (2016). Prospects for high water recovery membrane desalination. Desalination, 401(2), 180-189. doi:https://doi.org/10.1016/j.desal.2016.07.047
  • UN-WATER. (2021). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los recursos Hídricos 2021 EL VALOR DEL AGUA [United Nations World Water Development Report 2021 THE VALUE OF WATER]. Paris, Francia: UNESCO. Retrieved from https://agua.org.mx/biblioteca/informe-mundial-de-las-naciones-unidas-sobre-el-desarrollo-de-los-recursos-hidricos-2021/
  • Urbina Baca, G. (2010). Evaluación de proyectos (6ta ed ed.). McGraw-Hill. doi:https://doi.org/978-607-15-0260-5
  • USEPA. (1999). Discharge Standards (UNDS). Distillation and Reverse Osmosis Brine: Natural Discharge. Retrieved from United States Environmental Protection agency: https://www.epa.gov/sites/default/files/2015-08/documents/2007_07_10_oceans_regulatory_unds_tdddocuments_appadistillation.pdf.
  • USEPA. (1999). Phase I Final Rule and Technical Development Document of Uniform National Discharge Standars (UNDS). Retrieved from United States Environmental Protection Agency: https://www.epa.gov/vessels-marinas-and-ports/uniform-national-discharge-standards-unds-phase-i-final-rule.
  • USEPA. (2023). Biosolids. Retrieved from United States Environmental Protection Agency: https://www.epa.gov/biosolids/plain-english-guide-epa-part-503-biosolids-rule
  • USEPA. (2023). Hazardous Waste Generator Regulatory Summary. Retrieved from United States Environmental Protection Agency: https://www.epa.gov/hwgenerators/hazardous-waste-generator-regulatory-summary#table.
  • USEPA. (2023). Water Requirements for State and Public Water Systems. Retrieved from United States Environmental Protection Agency: https://www.epa.gov/dwreginfo/drinking-water-regulations
  • Venzke, C. D., Giacobbo, A., Ferreira, J. Z., Bernardes, A. M., and Siqueira, M. A. (2018). Increasing water recovery rate of membrane hybrid process on the petrochemical wastewater treatment. Process Safety and Environmental Protection, 117, 152-158. doi:https://doi.org/10.1016/j.psep.2018.04.023
  • Wei, X., Sanders, T., and Childress, A. E. (2021). Reclaiming wastewater with increasing salinity for potable water reuse: Water recovery and energy consumption during reverse osmosis desalination. Desalination, 520. doi:https://doi.org/10.1016/j.desal.2021.115316
  • Wu, Q., Li, G., Yin, J., Liu, M., Yan, J., Deguchi, Y. (2024). The integration of seawater desalination system with nuclear power plant: Operational flexibility enhancement and thermo-economic performances. Nuclear Engineering and Design. 418,112889. https://doi.org/10.1016/j.nucengdes.2023.112889.
  • Zaragoza, S., Muro , C., Hernández, K., Díaz-Blancas, V., Martínez, M. S., and Riera, F. (2023). Separation and phenol recovery from resin effluents by ultrafiltration. A proposal to use this method on an industrial scale. Chem Eng Commun, 2010(1), 47-60. doi:https://doi.org/10.1080/00986445.2021.2001457.
  • Zhou, Z., Zhang, M., Xia, Q., Zhao, X., Ming, Q., and Zwng, L. (2023). Effects of nanofiltration on desalination of flue gas desulfurization wastewater by electrodialysis: Treatment effect, fouling property and techno-economic analysis. Separation and Purification Technology, 316. doi:https://doi.org/10.1016/j.seppur.2023.123768