Vol. 23, No. 3 (2024), Alim24288 https://doi.org/10.24275/rmiq/Alim24288


Comparison of mathematical and artificial neural network model to predict hot air-drying kinetics of garlic slices and determination of powder qualities


 

Authors

L.T.K. Loan and B.T. Vinh


Abstract

It is difficult to model the changes in moisture content when using hot air dryers that vary in temperature. This study focused on examining mathematical models and artificial neural networks (ANN) to forecast the moisture content of sliced garlic. Additionally, the study explored the impact of drying temperature on sliced garlic (2 mm). The trials were conducted using four different degrees of hot air temperature (50, 60, 70, and 80ºC). The quality of the powder used in these treatments was also assessed. The results indicated that out of the seven mathematical models, the two-term model provided the most accurate prediction of moisture ratio during the drying process, as evidenced by its greatest R-square value and lowest MSE. In addition, an artificial neural network (ANN) model with 4 hidden layers can also yield the most accurate model, meeting the same criteria as the mathematical model. When comparing the ANN model to the other model, both are capable of providing highly accurate predictions. Nevertheless, the use of an ANN model could yield more advantages in the up-scaling process. Furthermore, subjecting garlic slices to a drying process at a temperature of 60oC can result in a product that possesses elevated levels of antioxidants, antioxidant activity, allicin content, and overall acceptance.


Keywords

garlic, artificial neural network, drying, modeling, antioxidant.


References

  • Arabhosseini, A., Huisman, W., van Boxtel, A., & Müller, J. (2009). Modeling of thin layer drying of tarragon (Artemisia dracunculus L.). Industrial Crops and Products, 29(1), 53-59. https://doi.org/10.1016/j.indcrop.2008.04.005
  • Caiyan, J., Shan, S., Jie, Z., Baoshang, F., Minqiang, G., Pengbo, S., & Pengfei, J. (2023). Application of an artificial neural network model to predict the change of moisture during drying of sturgeon bone marrow. Quality Assurance and Safety of Crops & Foods, 15(1), 84-91. https://doi.org/10.15586/qas.v15i1.1085
  • Chokphoemphun, S., Hongkong, S., & Chokphoemphun, S. (2023). Evaluation of drying behavior and characteristics of potato slices in multi–stage convective cabinet dryer: Application of artificial neural network. Information Processing in Agriculture. https://doi.org/10.1016/j.inpa.2023.06.003
  • Daliran, A., Taki, M., Marzban, A., Rahnama, M., & Farhadi, R. (2023). Experimental evaluation and modeling the mass and temperature of dried mint in greenhouse solar dryer; Application of machine learning method. Case Studies in Thermal Engineering, 47, 103048. https://doi.org/10.1016/j.csite.2023.103048
  • Dandamrongrak, R., Young, G., & Mason, R. (2002). Evaluation of various pre-treatments for the dehydration of banana and selection of suitable drying models. Journal of Food Engineering, 55(2), 139-146. https://doi.org/10.1016/S0260-8774(02)00028-6
  • Demiray, E., & Tulek, Y. (2017). Effect of temperature on water diffusion during rehydration of sun-dried red pepper (Capsicum annuum L.). Heat and Mass Transfer, 53, 1829-1834. https://doi.org/10.1007/s00231-016-1940-0
  • Dorofki, M., Elshafie, A., Jaafar, O., Karim, O., & Mastura, S. (2012). A GIS-ANN-Based Method for Calculating the Runoff. Energy, 1(1), 1-5.
  • Dorrigiv, M., Zareiyan, A., & Hosseinzadeh, H. (2020). Garlic (Allium sativum) as an antidote or a protective agent against natural or chemical toxicities: A comprehensive update review. Phytotherapy Research, 34(8), 1770-1797. https://doi.org/10.1002/ptr.6645
  • El-Saber Batiha, G., Magdy Beshbishy, A., G. Wasef, L., Elewa, Y. H., A. Al-Sagan, A., Abd El-Hack, M. E., Taha, A. E., M. Abd-Elhakim, Y., & Prasad Devkota, H. (2020). Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients, 12(3), 872. https://doi.org/10.3390/nu12030872
  • Emadzadeh, B., Ghorani, B., Naji-Tabasi, S., Charpashlo, E., & Molaveisi, M. (2021). Fate of β-cyclodextrin-sugar beet pectin microcapsules containing garlic essential oil in an acidic food beverage. Food Bioscience, 42, 101029. https://doi.org/10.1016/j.fbio.2021.101029
  • Espinoza, T., Valencia, E., Albarrán, M., Díaz, D., Quevedo, R. A., Díaz, O., & Bastías, J. (2020). Garlic (Allium sativum L) and Its beneficial properties for health: A review. Agroindustrial Science, 10(1), 103-115. https://doi.org/10.17268/agroind.sci.2020.01.14
  • Guo, X., Hao, Q., Qiao, X., Li, M., Qiu, Z., Zheng, Z., & Zhang, B. (2023). An evaluation of different pretreatment methods of hot-air drying of garlic: Drying characteristics, energy consumption and quality properties. LWT, 180, 114685. https://doi.org/10.1016/j.lwt.2023.114685
  • Hadjout‐Krimat, L., Belbahi, A., Dahmoune, F., Hentabli, M., Boudria, A., Achat, S., Remini, H., Oukhmanou‐Bensidhoum, S., Spigno, G., & Madani, K. (2023). Study of microwave and convective drying kinetics of pea pods (Pisum sativum L.): A new modeling approach using support vector regression methods optimized by dragonfly algorithm techniques. Journal of Food Process Engineering, 46(2), e14232. https://doi.org/10.1111/jfpe.14232
  • Jeevarathinam, G., Pandiselvam, R., Pandiarajan, T., Preetha, P., Krishnakumar, T., Balakrishnan, M., Thirupathi, V., Ganapathy, S., & Amirtham, D. (2022). Design, development, and drying kinetics of infrared-assisted hot air dryer for turmeric slices. Journal of Food Process Engineering, 45(6), e13876. https://doi.org/10.1111/jfpe.13876
  • Karlović, S., Dujmić, F., Brnčić, S. R., Sabolović, M. B., Ninčević Grassino, A., Škegro, M., Šimić, M. A., & Brnčić, M. (2023). Mathematical modeling and optimization of ultrasonic pre-treatment for drying of pumpkin (Cucurbita moschata). Processes, 11(2), 469. https://doi.org/10.3390/pr11020469
  • Langbauer, R., Nunner, G., Zmek, T., Klarner, J., Prieler, R., & Hochenauer, C. (2023). Modelling of thermal shrinkage of seamless steel pipes using artificial neural networks (ANN) focussing on the influence of the ANN architecture. Results in Engineering, 17, 100999. https://doi.org/10.1016/j.rineng.2023.100999
  • Lara-Cerecedo, L. O., Pitalúa-Díaz, N., & Hinojosa-Palafox, J. F. (2023). Comparative study of the prediction of electrical energy from a photovoltaic system using the intelligent systems ANFIS and ANFIS-GA. Revista Mexicana de Ingeniería Química, 22(1), Ener2956-Ener2956. https://doi.org/10.24275/rmiq/Ener2956
  • Lawson, L. D., & Wang, Z. J. (2001). Low allicin release from garlic supplements: a major problem due to the sensitivities of alliinase activity. Journal of Agricultural and Food Chemistry, 49(5), 2592-2599. https://doi.org/10.1021/jf001287m
  • Loan, L. T. K., & Tai, N. V. (2023). Process of foam-mat drying of purple rice bran extract and evaluation of product properties. Revista Mexicana de Ingeniería Química, 22(3), Alim23148. https://doi.org/10.24275/rmiq/Alim23148
  • Loan, L. T. K., Thuy, N. M., & Van Tai, N. (2023). Mathematical and artificial neural network modeling of hot air drying kinetics of instant “Cẩm” brown rice. Food Science and Technology, 43, e27623. https://doi.org/10.5327/fst.27623
  • Mbegbu, N. N., Nwajinka, C. O., & Amaefule, D. O. (2021). Thin layer drying models and characteristics of scent leaves (Ocimum gratissimum) and lemon basil leaves (Ocimum africanum). Heliyon, 7(1), e05945. https://doi.org/10.1016/j.heliyon.2021.e05945
  • Mohan, I., Sahoo, A., Mandal, S., & Kumar, S. (2023). Kinetic modeling and thermogravimetric investigation of Phoenix dactylifera and Phyllanthus emblica non-edible oil seeds: artificial neural network (ANN) prediction modeling. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04094-z
  • Ozma, M. A., Abbasi, A., Ahangarzadeh Rezaee, M., Hosseini, H., Hosseinzadeh, N., Sabahi, S., Noori, S. M. A., Sepordeh, S., Khodadadi, E., & Lahouty, M. (2023). A critical review on the nutritional and medicinal profiles of garlic’s (Allium sativum L.) bioactive compounds. Food Reviews International, 39(9), 6324-6361. https://doi.org/10.1080/87559129.2022.2100417
  • Selvi, K. Ç., Alkhaled, A. Y., & Yıldız, T. (2022). Application of Artificial Neural Network for Predicting the Drying Kinetics and Chemical Attributes of Linden (Tilia platyphyllos Scop.) during the Infrared Drying Process. Processes, 10(10), 2069. https://doi.org/10.3390/pr10102069
  • Subramanyam, R., & Narayanan, M. (2023). Artificial neural network modeling for drying kinetics of paddy using a cabinet tray dryer. Chemical Industry & Chemical Engineering Quarterly, 29(2), 87-98. https://doi.org/10.2298/CICEQ220106017S
  • Subroto, E., Cahyana, Y., Tensiska, M., Lembong, F., Filianty, E., Kurniati, E., Wulandari, D., Saputra, R., & Faturachman, F. (2021). Bioactive compounds in garlic (Allium sativum L.) as a source of antioxidants and its potential to improve the immune system: a review. Food Research, 5(1), 10.26656. https://doi.org/10.26656/fr.2017.5(6).042
  • Tai, N. V., Linh, M. N., & Thuy, N. M. (2021). Modeling of thin layer drying characteristics of “Xiem” banana peel cultivated at U Minh district, Ca Mau province, Vietnam. Food Research, 5(5), 244-249. http://doi.org/10.26656/fr.2017.5(5).180
  • Tai, N. V., Thuy, N. M., Huong, H. T. T., Dang, P. C., & Minh, V. Q. (2024). Model kinetic and techno-analysis of moringa leaves hot air-drying process for sustainability development. Acta Scientiarum Polonorum Technologia Alimentaria, 23(1), 5-14.
  • Thuwapanichayanan, R., Prachayawarakorn, S., & Soponronnarit, S. (2014). Heat and moisture transport behaviour and quality of chopped garlic undergoing different drying methods. Journal of Food Engineering, 136, 34-41. https://doi.org/10.1016/j.jfoodeng.2014.03.017
  • Thuy, N. M., Giau, T. N., Hao, H. V., Dung, N. C., Tai, N. V., & Minh, V. Q. (2024). Effects of steaming and drying on quality and antioxidant activity of white-fleshed sweet potato powder (Ipomoea batatas). Revista Mexicana de Ingeniería Química, 22(3), Alim24184.
  • Thuy, N. M., Giau, T. N., Tai, N. V., & Minh, V. Q. (2023). Drying kinetics and mathematical modeling of dried macaroni supplemented with Gac aril Cinética de secado y modelado matemático de macarrones secos suplementados con Gac aril. Revista Mexicana de Ingeniería Química, 22(3), Alim23103. https://doi.org/10.24275/rmiq/Alim23103
  • Thuy, N. M., Hiep, L. H., Tai, N. V., Huong, H. T. T., & Minh, V. Q. (2022). Impact of drying temperatures on drying behaviours, energy consumption and quality of purple sweet potato flour. Acta Scientiarum Polonorum Technologia Alimentaria, 21(4), 379-387. https://doi.org/10.17306/J.AFS.1061
  • Thuy, N. M., Minh, V. Q., Ha, H. T. N., & Tai, N. V. (2021). Impact of different thin layer drying temperatures on the drying time and quality of butterfly pea flowers. Food Research, 5, 197-203. https://doi.org/10.26656/fr.2017.5(6).328
  • Van Tai, N., Linh, M. N., & Thuy, N. M. (2021). Optimization of extraction conditions of phytochemical compounds in “Xiem” banana peel powder using response surface methodology. Journal of Applied Biology and Biotechnology, 9(6), 56-62.
  • Wongsa, P., Bhuyar, P., Tongkoom, K., Spreer, W., & Müller, J. (2023). Influence of hot-air drying methods on the phenolic compounds/allicin content, antioxidant activity and α-amylase/α-glucosidase inhibition of garlic (Allium sativum L.). European Food Research and Technology, 249(2), 523-535. https://doi.org/10.1007/s00217-022-04150-4
  • Yang, T., Zheng, X., Vidyarthi, S. K., Xiao, H., Yao, X., Li, Y., Zang, Y., & Zhang, J. (2023). Artificial Neural Network Modeling and Genetic Algorithm Multiobjective Optimization of Process of Drying-Assisted Walnut Breaking. Foods, 12(9), 1897. https://doi.org/10.3390/foods12091897
  • Zalpouri, R., Singh, M., Kaur, P., Kaur, A., Gaikwad, K. K., & Singh, A. (2023). Drying Kinetics, Physicochemical and Thermal Analysis of Onion Puree Dried Using a Refractance Window Dryer. Processes, 11(3), 700. https://doi.org/10.3390/pr11030700
  • Zhang, B., Qiu, Z., Zhao, R., Zheng, Z., Lu, X., & Qiao, X. (2021). Effect of blanching and freezing on the physical properties, bioactive compounds, and microstructure of garlic (Allium sativum L.). Journal of Food Science, 86(1), 31-39. https://doi.org/10.1111/1750-3841.15525
  • Zheng, Z.-A., Wang, S.-Y., Wang, H., Xiao, H., Liu, Z.-L., Pan, Y.-H., & Gao, L. (2023). Comparative Study on the Influence of Various Drying Techniques on Drying Characteristics and Physicochemical Quality of Garlic Slices. Foods, 12(6), 1314. https://doi.org/10.3390/foods12061314
  • Zhong, Y., Ding, Y., Jiang, G., Lu, K., & Li, C. (2023). Comparison of Artificial Neural Networks and kinetic inverse modeling to predict biomass pyrolysis behavior. Journal of Analytical and Applied Pyrolysis, 169, 105802. https://doi.org/10.1016/j.jaap.2022.105802