Vol. 23, No. 3 (2024), Alim24307 https://doi.org/10.24275/rmiq/Alim24307


Moisture sorption isotherms, thermodynamic properties and sorption properties of walnut flavor microcapsules


 

Authors

S.K. Velázquez-Gutiérrez, A. Román-Guerrero, S. Cortés-Camargo, J. Cruz-Olivares, M.F. Fabela-Morón, C. Pérez-Alonso


Abstract

Flavorings are encapsulated through spray drying to ensure protection throughout their shelf life. However, the stability of microencapsulated flavorings largely depends on the choice of wall material. This work evaluates three wall material systems of walnut flavor: microcapsules of mesquite gum (MMG), whey protein concentrate (MWPC) and a 1:1 (w:w) mixture of both (MMG-WPC), onto their moisture sorption isotherms, fitting to GAB model, thermodynamic and sorption properties at different temperatures (25, 35 and 40°C). The MMG displayed greater monolayer moisture adsorption capacity (M0: 4.69-5.52 kg H2O/100 kg dried solid (d.s.)) and adsorbent-adsorbate interaction due to its greater hygroscopicity, but less tendency to agglomeration trend than MWPC and MMG-WPC. The MMG exhibited the lowest differential enthalpy and entropy values, promoting an advantageous dehydration process and ensuring greater stability, which was attributed to the enhancement of water molecular order. Additionally, MMG displayed the largest sorption surface area, facilitating the moisture sorption process. Therefore, all three microcapsules’ systems were able to stabilize the walnut flavor, however, their slight differences in their moisture sorption capacity led to different stabilization mechanisms that affected their shelf life.


Keywords

Walnut flavoring; Microcapsules; Moisture sorption isotherms; Thermodynamics.


References

  • Alpizar-Reyes, E., Carrillo-Navas, H., Romero-Romero, R., Varela-Guerrero, V., Alvarez-Ramírez, J., & Pérez-Alonso, C. (2017). Thermodynamic sorption properties and glass transition temperature of tamarind seed mucilage (Tamarindus indica L.). Food and Bioproducts Processing, 101, 166–176. http://dx.doi.org/10.1016/j.fbp.2016.11.006
  • Arslan-Tontul, S. (2021). Moisture sorption isotherm and thermodynamic analysis of quinoa grains. Heat and Mass Transfer, 57, 543–550. https://doi.org/10.1007/s00231-020-02978-8
  • Azuara, E., & Beristain, C. I., (2006). Enthalpic and entropic mechanisms related to water sorption of yogurt. Drying Technology, 24(11), 1501-1507. https://doi.org/10.1080/07373930600961173
  • Beristain, C. I., Azuara, E., & Vernon-Carter, E. J. (2002). Effect of water activity on the stability to oxidation of spray-dried encapsulated orange peel oil using mesquite gum (Prosopis juliflora) as wall material. Journal of Food Science, 67, 206–211. https://doi.org/10.1111/j.13652621.2002.tb11385.x
  • Bonilla, E., Azuara, E., Beristain, C. I., & Vernon-Carter, E. J. (2010). Predicting suitable storage conditions for spray-dried microcapsules formed with different biopolymer matrices. Food Hydrocolloids, 24(6-7), 633-640. https://doi.org/10.1016/j.foodhyd.2010.02.010
  • Calva-Estrada, S. J., Lugo-Cervantes, E., & Jiménez-Fernández, M. (2019). Microencapsulation of cocoa liquor nanoemulsion with whey protein using spray drying to protection of volatile compounds and antioxidant capacity. Journal of Microencapsulation, 36(5), 447–458. https://doi.org/10.1080/02652048.2019.1638463
  • Carneiro, H. C. F., Hoster, K., Reineccius, G., & Prata, A. S. (2022). Flavoring properties that affect the retention of volatile components during encapsulation process. Food Chemistry: X, 13, 100230. https://doi.org/10.1016/j.fochx.2022.100230
  • Cheng, X., Ling, P., Iqbal, M. S., Liu, F., Xu, J., & Wang, X. (2023). Water adsorption properties of microalgae powders: Thermodynamic analysis and structural characteristics. Journal of Stored Products Research, 101, 102093.  https://doi.org/10.1016/j.jspr.2023.102093
  • Chranioti, C., Nikoloudaki, A., & Tzia, C. (2015). Saffron and beetroot extracts encapsulated in maltodextrin, gum Arabic, modified starch and chitosan: Incorporation in a chewing gum system. Carbohydrate polymers, 127, 252-263. https://doi.org/10.1016/j.carbpol.2015.03.049
  • Collazos-Escobar, G. A., Gutiérrez-Guzmán, N., Váquiro-Herrera, H. A., Bon, J., & Garcia-Perez, J. V. (2022). Thermodynamic analysis and modeling of water vapor adsorption isotherms of roasted specialty coffee (Coffee arabica L. cv. Colombia). LWT - Food Science and Technology, 160, 113335. https://doi.org/10.1016/j.lwt.2022.113335
  • Cortés-Camargo, S., Cruz-Olivares, J., Barragán-Huerta, B. E., Dublán-García, O., Román-Guerrero, A., & Pérez-Alonso, C. (2017). Microencapsulation by spray drying of lemon essential oil: Evaluation of mixtures of mesquite gum–nopal mucilage as new wall materials. Journal of Microencapsulation, 34(4), 395–407.   https://doi.org/10.1080/02652048.2017.1338772
  • De Araújo, A. L., & Da Silva-Pena, R. (2022). Moisture desorption behavior and thermodynamic properties of pulp and seed of jambolan (Syzygium cumini). Heliyon, 8(5), 09443. https://doi.org/10.1016/j.heliyon.2022.e09443
  • Díaz, D. I., Beristain, C. I., Azuara, E., Luna, G., & Jiménez, M. (2015). Effect of wall material on the antioxidant activity and physicochemical properties Ofrubus fruticosus juice microcapsules. Journal of Microencapsulation, 32(3), 247–254. https://doi.org/10.3109/02652048.2015.1010458
  • Drusch, S., & Berg, S. (2008). Extractable oil in microcapsules prepared by spray-drying: Localisation, determination and impact on oxidative stability. Food chemistry, 109(1), 17-24. https://doi:10.1016/j.foodchem.2007.12.016
  • Du, J., Ge, Z.-Z., Xu, Z., Zou, B., Zhang, Y., & Li, C.-M. (2014). Comparison of the efficiency of five different drying carriers on the spray drying of persimmon pulp powders. Drying Technology, 32(10), 1157–1166. https://doi.org/10.1080/07373937.2014.886259
  • Espinosa-Andrews, H., Morales-Hernández, N., García-Márquez, E., & Rodríguez-Rodríguez, R. (2022). Development of fish oil microcapsules by spray drying using mesquite gum and chitosan as wall materials: Physicochemical properties, microstructure, and lipid hydroperoxide concentration. International Journal of Polymeric Materials and Polymeric Biomaterials, 72(8), 646–655. https://doi.org/10.1080/00914037.2022.2042289
  • Feng, T., Wang, H., Wang, K., Liu, Y., Rong, Z., Ye, R., Zhuang, H., Xu, Z., & Sun, M. (2018). Preparation and structural characterization of different amylose–flavor molecular inclusion complexes. Starch-Stärke, 70(1–2). https://doi.org/10.1002/ star.201700101
  • Fletcher, A. J., & Thomas, K.M. (2000). Compensation effect for the kinetics of adsorption/desorption of gases/vapors on microporous carbon materials. Langmuir, 16, 6253–6266. https://doi.org/10.1021/la9916528
  • Fuciños, C., Míguez, M., Fuciños, P., Pastrana, L. M., Rúa, M. L., & Vicente, A. A. (2017). Creating functional nanostructures: Encapsulation of caffeine into α-lactalbumin nanotubes. Innovative Food Science & Emerging Technologies, 40, 10–17.  https://doi. org/10.1016/j.ifset.2016.07.030
  • Gallegos-Marin, I., Méndez-Lagunas, L. L., Rodríguez-Ramírez, J., & Martínez-Sánchez, C. E. (2016). Structural properties changes during osmotic drying of plantain (Musa paradisiaca AAB) and its role on mass transfer. Revista Mexicana de Ingeniería Química, 15(2), 441-456.
  • Garvín, A., Ibarz, R., & Ibarz, A. (2017). Kinetic and thermodynamic compensation. A current and practical review for Foods. Food Research International, 96, 132–153. https://doi.org/10.1016/j.foodres.2017.03.004
  • Hernández-Carrillo, J. G., Mújica-Paz, H., Welti-Chanes, J., Spatafora-Salazar, A. S., & Valdez-Fragoso, A. (2019). Sorption behavior of citric pectin films with glycerol and olive oil. Revista Mexicana de Ingeniería Química, 18(2), 487-500. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/Hernandez
  • Hoyos-Leyva, J. D., Bello-Pérez, L. A., Agama-Acevedo, E., & Alvarez-Ramirez, J. (2018). Thermodynamic analysis for assessing the physical stability of core materials microencapsulated in taro starch spherical aggregates. Carbohydrate Polymers, 197, 431–441. https://doi.org/10.1016/j.carbpol.2018.06.012
  • Iglesias, H. A., Baeza, R., & Chirife, J. (2022). A survey of temperature effects on GAB monolayer in foods and minimum integral entropies of sorption: A review. Food and Bioprocess Technology, 15(4), 717–733. https://doi.org/10.1007/s11947-021-02740-w
  • Jafari, S. M., Masoudi, S., & Bahrami, A. (2019). A Taguchi approach production of spray-dried whey powder enriched with nanoencapsulated vitamin D3. Drying Technology. 37(16), 2059–2071. https://doi.org/10.1080/07373937.2018.1552598
  • Kim, E. H. J., Paredes, D., Motoi, L., Eckert, M., Wadamori, Y., Tartaglia, J., Green, C., Hedderley, D. I., & Morgenstern, M. P. (2019). Dynamic flavor perception of encapsulated flavors in a soft chewable matrix. Food Research International, 123, 241–250. https://doi.org/10.1016/j.foodres.2019.04.038
  • Krug, R. R., Hunter, W. G., & Grieger, R. A. (1976a). Enthalpy–entropy compensation 1. Some fundamental statistical problems associated with the Van’t Hoff and Arrhenius data. Journal of Physical Chemistry, 80, 2335–2341. https://doi.org/10.1021/j100562a006
  • Krug, R.R., Hunter, W.G., & Grieger, R.A., (1976b). Enthalpy–entropy compensation 2. Separation of the chemical from the statistical effect. Journal of Physical Chemistry, 80, 2342–2351. https://doi.org/10.1021/j100562a007
  • Monte, M.L., Moreno, M.L., Senna, J., Arrieche, L.S., & Pinto, L.A.A. (2018). Moisture sorption isotherms of chitosan-glycerol films: Thermodynamic properties and microstructure. Food Bioscience, 22, 170-177. https://doi.org/10.1016/j.fbio.2018.02.004
  • Ocieczek, A., Mesinger, D., & Toczek, H. (2022). Hygroscopic properties of three cassava (Manihot esculenta Crantz) starch products: application of BET and GAB models. Foods, 11(13), 1966. https://doi.org/10.3390/foods11131966
  • Ochoa-Velasco, C. E., Salazar-González, C., Cid-Ortega, S., & Guerrero-Beltrán, J. A. (2017). Antioxidant characteristics of extracts of Hibiscus sabdariffa calyces encapsulated with mesquite gum. Journal of Food Science and Technology, 54(7), 1747–1756.  https://doi.org/10.1007/s13197-017-2564-1
  • Ordoñez-Eraso M. & Herrera A. (2014). Use of Starches and Milk Proteins in Microencapsulation, International Journal of Vegetable Science, 20(4), 289-304. https://doi:10.1080/19315260.2013.803181
  • Osorio-Tellez, A., Pedroza-Islas, R., & Pérez-Alonso, C. (2021). Prediction of storage stability parameters of spray dried powders of maltodextrins and corn syrups with different levels of hydrolysis (conversion). Revista Mexicana de Ingeniería Química, 20(2), 679-696. https://doi.org/10.24275/rmiq/Alim2136
  • Pascual-Pineda, L. A., Alamilla-Beltrán, L., Gutiérrez-López, G. F., Azuara, E., & Flores-Andrade, E. (2017). Prediction of storage conditions of dehydrated foods from a water vapor adsorption isotherm. Revista Mexicana de Ingeniería Química, 16(1), 207-220. https://doi.org/10.24275/rmiq/Alim817
  • Pérez-Alonso, C., Beristain, C. I., Lobato-Calleros, C., Rodríguez-Huezo, M. E., & Vernon-Carter, E. J. (2006). Thermodynamic analysis of the sorption isotherms of pure and blended carbohydrate polymers. Journal of Food Engineering, 77, 753-760. https://doi.org/10.1016/j.jfoodeng.2005.08.002
  • Premjit, Y., Pandhi, S., Kumar, A., Rai, D. C., Duary, R. K., & Mahato, D. K. (2022). Current trends in flavor encapsulation: A comprehensive review of emerging encapsulation techniques, flavour release, and mathematical modelling. Food Research International, 151, 110879. https://doi.org/10.1016/j.foodres.2021.110879
  • Quirijns, E. J., Van Boxtel, A. J., Van Loon, W. K., & Van Straten, G. (2005). Sorption isotherms, GAB parameters and isosteric heat of sorption. Journal of the Science of Food and Agriculture, 85(11), 1805-1814. https://doi.org/10.1002/jsfa.2140
  • Rizvi, S.S.H. (1986). Engineering Properties of Foods. In M.A. Rao & S.S.H. Rizvi (Eds), Thermodynamic Properties of Foods in Dehydration (pp. 133-214). New York: Marcel Dekker Inc.
  • Rizvi, S.S.H. (1995). Engineering Properties of Foods. In M.A. Rao & S.S.H. Rizvi (Eds), Thermodynamic Properties of Foods in Dehydration (pp. 223-309). New York: Academic Press.
  • Rodríguez-Bernal, J. M., Flores-Andrade, E., Lizarazo-Morales, C., Bonilla, E., Pascual-Pineda, L. A., Gutierréz-López, G., & Quintanilla-Carvajal, M. X. (2015). Moisture adsorption isotherms of the Borojó Fruit (borojoa patinoi. Cuatrecasas) and gum arabic powders. Food and Bioproducts Processing, 94, 187–198. https://doi.org/10.1016/j.fbp.2015.03.004
  • Rosa, D. P., Evangelista, R. R., Machado, A. L. B., Sanches, M. A. R., & Telis-Romero, J. (2021). Water sorption properties of papaya seeds (Carica papaya L.) formosa variety: An assessment under storage and drying conditions. LWT - Food Science and Technology, 138, 110458. https://doi.org/10.1016/j.lwt.2020.110458
  • Rostamabadi, M. M., Falsafi, S. R., Nishinari, K., & Rostamabadi, H. (2022). Seed gum-based delivery systems and their application in encapsulation of bioactive molecules. Critical Reviews in Food Science and Nutrition, 63(29),9937-9960.  https://doi:10.1080/10408398.2022.2076065
  • Saffarionpour, S. (2019). Nanoencapsulation of hydrophobic food flavor ngredients and their cyclodextrin inclusion complexes. Food and Bioprocess Technology, 12(7), 1157–1173. https://doi.org/10.1007/s11947-019-02285-z
  • Saifullah, M., Shishir, M. R. I., Ferdowsi, R., Tanver Rahman, M. R., & Van Vuong, Q. (2019). Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review. Trends in Food Science & Technology, 86, 230–251.  https://doi.org/10.1016/j.tifs.2019.02.030
  • Saini, A., Panwar, D., Panesar, P. S., & Bera, M. B. (2020). Encapsulation of functional ingredients in lipidic nanocarriers and antimicrobial applications: A review. Environmental Chemistry Letters, 19, 1107–1134. https://doi.org/10.1007/s10311-020-01109-3
  • Samakradhamrongthai, R. S., Angeli, P. T., Kopermsub, P., & Utama-Ang, N. (2019). Optimization of gelatin and gum arabic capsule infused with pandan flavor for multi-core flavor powder encapsulation. Carbohydrate Polymers, 226, 115262. https://doi. org/10.1016/j.carbpol.2019.115262
  • Sánchez-Sáenz, E. O., Pérez-Alonso, C., Cruz-Olivares, J., Román-Guerrero, A., Báez-González, J.  G., & Rodríguez-Huezo, M. E. (2011). Establishing the most suitable storage conditions for microencapsulated allspice essential oil entrapped in blended biopolymers matrices. Drying Technology, 29(8), 863–872. https://doi.org/10.1080/07373937.2010.545495
  • Shanker, N., Kumar, M. M., Juvvi, P., & Debnath, S. (2019). Moisture sorption characteristics of ready-to-eat snack food enriched with purslane leaves. Journal of Food Science and Technology-Mysore, 56(4), 1918–1926. https://doi.org/10.1007/s13197- 019-03657-1
  • Silva, K. S., Polachini, T. C., Luna-Flores, M., Luna-Solano, G., Resende, O., & Telis-Romero, J. (2021). Sorption isotherms and thermodynamic properties of wheat malt under storage conditions. Journal of Food Process Engineering, 44(9), 13784. https://doi.org/10.1111/jfpe.13784
  • Singh, R. R. B., Rao, K. H., Anjaneyulu, A. S. R., & Patil, G. R. (2001). Moisture sorption properties of smoked chicken sausages from spent hen meat. Food Research Interantional, 34 (2–3), 143–148. https://doi.org/10.1016/S0963-9969(00)00145-9
  • Soleimanifard, S., & Hamdami, N. (2018). Modelling of the sorption isotherms and determination of the isosteric heat of split pistachios, pistachio kernels and shells. Czech Journal of Food Sciences, 36(3), 268–275. https://doi.org/10.17221/460/2016-cjfs
  • Sonwane, C. G., & Bhatia, K. (2000). Characterization of pore size distributions of mesoporous materials from adsorption isotherms. Journal of Physical Chemistry B, 104, 9099–9110. https://doi.org/10.1021/jp000907j
  • Stępień, A., Witczak, M., & Witczak, T. (2020). Moisture sorption characteristics of food powders containing freeze dried avocado, maltodextrin and inulin. International Journal of Biological Macromolecules, 149, 256-261. https://doi.org/10.1016/j.ijbiomac.2020.01.154
  • Sultana, A., Tanaka, Y., Fushimi, Y., & Yoshii, H. (2018). Stability and release behavior of encapsulated flavor from spray-dried Saccharomyces cerevisiae and maltodextrin powder. Food Research International, 106, 809–816.  https://doi.org/10.1016/j. foodres.2018.01.059
  • Timmermann, E.O., Chirife, J., & Iglesias, H.A. (2001). Water sorption isotherms of foods and foodstuffs: BET or GAB parameters? Journal of Food Engineering, 48, 19-31. https://doi.org/10.1016/S0260-8774(00)00139-4
  • Timmermann, E.O. (1989). A BET-like three sorption stage isotherms. Journal of Chemical Society Faraday Transactions I, 85, 1631-1645. https://doi.org/10.1039/F19898501631
  • Velázquez-Gutiérrez, S. K., Alpizar-Reyes, E., Guadarrama-Lezama, A. Y., Báez-González, J. G., Alvarez-Ramírez, J., & Pérez-Alonso, C. (2021). Influence of the wall material on the moisture sorption properties and conditions of stability of sesame oil hydrogel beads by ionic gelation. LWT - Food Science and Technology, 140, 110695. https://doi.org/10.1016/j.lwt.2020.110695
  • Velázquez-Gutiérrez, S. K., Figueira, A. C., Rodríguez-Huezo, M. E., Román-Guerrero, A., Carrillo-Navas, H., & Pérez-Alonso, C. (2015). Sorption isotherms, thermodynamic properties and glass transition temperature of mucilage extracted from chia seeds (Salvia hispanica L.). Carbohydrate polymers, 121, 411-419. https://doi.org/10.1016/j.carbpol.2014.11.068
  • Włodarczyk-Stasiak, M., & Jamroz, J. (2008). Analysis of sorption properties of starch–protein extrudates with the use of water vapour. Journal of Food Engineering, 85(4), 580-589. https://doi.org/10.1016/j.jfoodeng.2007.08.019