Vol. 23, No. 3 (2024), Bio24269 https://doi.org/10.24275/rmiq/Bio24269


Application of crude enzyme extracts produced in solid-state fermentation by Trichoderma harzianum on coffee waste for the hydrolysis of pretreated waste


 

Authors

E. L. Hernández-Teyssier, Y. Mercado-Flores, A. Téllez-Jurado


Abstract

Residues from the coffee industry are an important source of organic matter to produce hydrolytic enzymes by solid-state fermentation (SSF) using filamentous fungi and Trichoderma harzianum. SSF was performed with sterilized (SR) and non-sterilized (nSR) residues with particle sizes between 1.68 mm and 2.37 mm. In the aqueous crude enzyme extracts from SSF-SR, a xylanase activity of 7.59 ± 1.18 IU/g dry of coffee residues mix was detected after 8 days, as well as CMCase activity, 3.4 ± 0.2 IU/g, after 6 days. In SSF-nSR, FPase activity, was 29.65 ± 3.14 IU/g, at 8 days of fermentation. Subsequently, SSF was carried out with pretreated residue with ultrasound-assisted aqueous extraction (SSF-pUAA) and with residues no-pretreatment; in both cases, a particle size between 1 mm-1.68 mm was used. The highest CMase activity with 9.4 ± 1.36 IU/g CRM was detected in the SSF-pUAA. Finally, the crude enzymatic extract obtained with buffer was used to hydrolyze residues treated by ultrasound-assisted organosolv testing different residue:enzyme extract ratios. In the best hydrolysis ratio (1:15), the highest presence of galactose was observed at 10.78 ± 0.84 mg/g, which can indicate hydrolysis, preferably of the hemicellulose present in the pretreated residues.


Keywords

Crude enzyme extract, CMCase, pretreatment coffee residues, solid-state fermentation, Trichoderma harzianum.


References

  • Al-dhabi, N.A., Ponmurugan, K. and Maran, P. (2017). Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds. Ultrasonics Sonochemistry 34, 206–213. https://doi.org/10.1016/j.ultsonch.2016.05.005.
  • Ang, S.K., Shaza E.M., Adibah, Y., Suraini, A.A. and Madihah, M.S. (2013). Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochemistry 48(9), 1293–1302. https://doi.oir/10.1016/j.procbio.2013.06.019.

 

  • Ávila-Núñez, R.A., Perez, B.R., Motzezak, R.H. and Chirinos, M. (2012). Contenido de azúcares totales, reductores y no reductores en Agave cocui Trelease. Multiciencias 12(2), 129–135.
  • Barrios-González, J. (2012). Solid-state fermentation: Physiology of solid medium, its molecular basis and applications. Process Biochemistry 47(2), 175–185. https://doi.org/10.1016/j.procbio.2011.11.016.

 

  • Brethauer, S. and Studer, M.H. (2014). Consolidated bioprocessing of lignocellulose by a microbial consortium. Energy and Environmental Science 7(4), 1446–1453. https://doi.org/10.1039/c3ee41753k.
  • Catalán, E., Komilis, D. and Sánchez, A. (2019). Environmental impact of cellulase production from coffee husks by solid-state fermentation: A life-cycle assessment. Journal of Cleaner Production 233, 954–962. https://doi.org/10.1016/j.jclepro.2019.06.100.

 

  • Cerda, A., Gea, T., Vargas-García, M.C. and Sánchez, A. (2017). Towards a competitive solid state fermentation: Cellulases production from coffee husk by sequential batch operation and role of microbial diversity. Science of the Total Environment 589, 56–65. https://doi.org/10.1016/j.scitotenv.2017.02.184.
  • Cerda, A., Gea, T., Vargas-García, M.C. and Sánchez, A. (2019). Valorisation of digestate from biowaste through solid-state fermentation to obtain value added bioproducts: A first approach. Bioresource Technology 271, 409–416. doi: https://doi.org/10.1016/j.biortech.2018.09.131.

 

  • Cheng, Y., Qu, Y., Yang, S., Zhuang, K. and Wang, J. (2021). Staged biorefinery of Moso bamboo by integrating polysaccharide hydrolysis and lignin reductive catalytic fractionation (RCF) for the sequential production of sugars and aromatics. Industrial Crops and Products 164(15), 113358. https://doi.org/10.1016/j.indcrop.2021.113358.
  • Chu, K. H. (2020). Fitting the Gompertz equation to asymmetric breakthrough curves. Journal of Environmental Chemical Engineering 8(3), 103713. https://doi.org/10.1016/j.jece.2020.103713.

 

  • Collins, T., Gerday, C. and Feller, G. (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews 29(1), 3–23. https://doi.org/10.1016/j.femsre.2004.06.005.
  • de Oliveira-Rodrigues, P., Alves-Gurgel, L.V., Pasquini, D., Badotti, F., Góes-Neto, A., and Alves-Baffi, M. (2020). Lignocellulose-degrading enzymes production by solid-state fermentation through fungal consortium among Ascomycetes and Basidiomycetes. Renewable Energy 145, 2683–2693. https://doi.org/10.1016/j.renene.2019.08.041.

 

  • Deborde, C., Moing, A., Roch, L., Jacob, D., Rolin D. and Giraudeau, P. (2017). Plant metabolism as studied by NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy 102–103, 61–97. https://doi.org/10.1016/j.pnmrs.2017.05.001.
  • de Souza-Vandenberghe, L.P., de Carvalho, J.C., Libardi, N., Rodrigues, C. and Soccol, C.R. (2016). Microbial enzyme factories: Current trends in production processes and commercial aspects. In: Agro-Industrial Wastes as Feedstock for Enzyme Production, (G.S. Dhillon and S. Kaur, eds.), Pp. 1-22. Academic Press. San Diego. https://doi.org/10.1016/B978-0-12-802392-1.00001-0.

 

  • Díaz, A.B., Car, I., de Ory, I. and Blandino, A. (2007). Evaluation of the conditions for the extraction of hydrolitic enzymes obtained by solid state fermentation from grape pomace. Enzyme and Microbial Technology 41(3), 302–306. https://doi.org/10.1016/j.enzmictec.2007.02.006.
  • Escudero-Agudelo, J., Daza Merchán, Z.T., Gil Zapata, N.J. and Mora Muñoz, O.Y. (2013). Evaluación de las enzimas celulolíticas producidas por hongos nativos mediante fermentación en estado sólido (SSF) utilizando residuos de cosecha de caña de azúcar. Revista Colombiana de Biotecnología 15(1), 108–117.

 

  • Gallardo-Ignacio, J., Nicasio-Torres, P., Santibáñez, A., Cabrera-Hilerio, S.L., and Cruz-Sosa, F. (2022). Ethnopharmacological study of the genus Coffea and compounds of biological importance. Rev. Mex. Ing. Quim. 21(3), 1–24. https://doi.org/10.24275/rmiq/Bio2856.
  • Geremu, M., Tola, Y. B. and Sualeh, A. (2016). Extraction and determination of total polyphenols and antioxidant capacity of red coffee (Coffea arabica L ) pulp of wet processing plants. Chemical and Biological Technologies in Agriculture 1–6. https://doi.org/10.1186/s40538-016-0077-1

 

  • Gómez-García, R., Medina-Morales, M.A., Rodríguez, R., Farriggia, B.M., Picó, G.A. and Aguilar, C.N. (2018). Production of a xylanase by Trichoderma harzianum (Hypocrea lixii) in solid-state fermentation and its recovery by an aqueous two-phase system. Canadian Journal of Biotechnology 2(2), 108–115. https://doi.org/10.24870/cjb.2018-000122.
  • Hames, B., Scarlata, C. and Sluiter, A. (2008). Determination of protein content in biomass Laboratory Analytical Procedure (LAP) Issue Date: 05/23/2008 Determination of Protein Content in Biomass Laboratory Analytical Procedure (LAP), (May).

 

  • Hernández-Teyssier, E.L., Anducho-Reyes, M.A., Díaz-Godínez, G. and Téllez Jurado, A. (2023a). Modeling of growth during detoxification of coffee residues by filamentous fungi. Ecosistemas y Recursos Agropecuarios III, 1-14. https//doi.org/10.19136/era.a10nIII.3628.
  • Hernández-Teyssier, E.L., Ramírez-Vargas, M.R., Ramírez-Castillo, M.L. and Téllez-Jurado, A. (2023b). Integration of extraction and acid hydrolysis processes as a strategy for better use and obtaining products from coffee residues. Rev. Mex. Ing. Quim. 22(1). https://doi.org/10.24275/rmiq/Bio3021.

 

  • Hyndman, R.J., and Koehler, A.B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting 22(4), 679–688. https://doi.org/10.1016/j.ijforecast.2006.03.001.
  • International Coffee Organization (2021). The future of coffee Investing in youth for a resilient and sustainable coffee sector. Available at: https://acortar.link/9McCm8. Accessed: February 2, 2024.

 

  • International Coffee Organization (2022). Circular Coffee Economy. Available at: https://www.internationalcoffeeday.org. Accessed: September 19, 2023.
  • International Coffee Organization (2023). The International Coffee Organization 1963-2023: 60 years of ICO development projects to build a sustainable coffee industry. Available at: https://icocoffee.org/documents/cy2022-23/ico-60-years-projects-e.pdf. Accessed: October 20, 2023.

 

  • Iqbal, H., and Kapoor, A. (2012). Tannin degradation efficiency of tannase produced by Trichoderma harzianum MTCC 10841 and its biochemical properties. Int. J. LifeSc. Bt & Pharm. Res. 1(10), 569–573. http://www.ijlbpr.com/jlbpradmin/upload/ijlbpr_506920349e60e.pdf.
  • Jampala, P., Tadikamalla, S., Preethi, M., Ramanujam, S. and Uppuluri K.B. (2017). Concurrent production of cellulase and xylanase from Trichoderma reesei NCIM 1186: enhancement of production by desirability-based multi-objective method. 3 Biotech 7(1). https://doi.org/10.1007/s13205-017-0607-y.

 

  • Kapoor, M., Panwar, D. and Kaira, G.S. (2016). Bioprocesses for Enzyme Production Using Agro-Industrial Wastes: Technical Challenges and Commercialization Potential. In:In: Agro-Industrial Wastes as Feedstock for Enzyme Production, (G.S. Dhillon and S. Kaur, eds.), Pp. 61-93. Academic Press. San Diego. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802392-1.00003-4.
  • Leite, P., Belo, I. and Salgado, J.M. (2021). Co-management of agro-industrial wastes by solid-state fermentation for the production of bioactive compounds. Industrial Crops and Products 172. https://doi.org/10.1016/j.indcrop.2021.113990.

 

  • Li, J.X., Zhang, F., Li, J., Zhang, Z., Bai, F., Chen, J. and Zhao, X.Q. (2019). Rapid production of lignocellulolytic enzymes by Trichoderma harzianum LZ117 isolated from Tibet for biomass degradation. Bioresource Technology 292, 122063. https://doi.org/10.1016/j.biortech.2019.122063.
  • Lin, X., Wu, L., Wang, X., Yao, L. and Wang, L. (2021). Ultrasonic-assisted extraction for flavonoid compounds content and antioxidant activities of India Moringa oleifera L. leaves: Simultaneous optimization, HPLC characterization and comparison with other methods. Journal of Applied Research on Medicinal and Aromatic Plants 20, 100284. https://doi.org/10.1016/j.jarmap.2020.100284.

 

  • Lizardi-Jiménez, M.A. and Hernández-Martínez, R. (2017). Solid state fermentation (SSF): diversity of applications to valorize waste and biomass. 3 Biotech, 7(1). https://doi.org/10.1007/s13205-017-0692-y.
  • Lopez-Ramirez, N., Volke-Sepúlveda, T., Gaime-Perraud, I., Saucedo-Castañeda, G. and Favela-Torres, E. (2018). Effect of stirring on growth and cellulolytic enzymes production by Trichoderma harzianum in a novel bench-scale solid-state fermentation bioreactor. Bioresource Technology, 265(June), 291–298. https://doi.org/10.1016/j.biortech.2018.06.015.

 

  • Martínez-Avila, O., Llimós, J. and Ponsá, S. (2021). Integrated solid-state enzymatic hydrolysis and solid-state fermentation for producing sustainable polyhydroxyalkanoates from low-cost agro-industrial residues. Food and Bioproducts Processing 126, 334–344. https://doi.org/10.1016/j.fbp.2021.01.015.
  • Martínez, O., Sánchez, A., Font, X. and Barrera, R. (2018). Enhancing the bioproduction of value-added aroma compounds via solid-state fermentation of sugarcane bagasse and sugar beet molasses: Operational strategies and scaling-up of the process. Bioresource Technology 263, 136–144. https://doi.org/10.1016/j.biortech.2018.04.106.

 

  • Moran-Aguilar, M.G., Costa-Trigo, I., Calderón-Santoyo, M., Domínguez, J.M. and Aguilar-Uscanga, M.G. (2021). Production of cellulases and xylanases in solid-state fermentation by different strains of Aspergillus niger using sugarcane bagasse and brewery spent grain. Biochemical Engineering Journal 172. https://doi.org/10.1016/j.bej.2021.108060.
  • Mosunova, O., Navarro-Muñoz, J.C. and Collemare, J. (2021). The biosynthesis of fungal secondary metabolites: From fundamentals to biotechnological applications. Encyclopedia of Mycology 458–476. https://doi.org/10.1016/B978-0-12-809633-8.21072-8.

 

  • Murthy, P.S. and Naidu, M.M. (2012). Production and Application of xylanase from Penicillium sp. utilizing coffee by-products. Food and Bioprocess Technology 5(2), 657–664. https://doi.org/10.1007/s11947-010-0331-7.
  • Navya, P.N. and Pushpa, S.M. (2013). Production, statistical optimization and application of endoglucanase from Rhizopus stolonifer utilizing coffee husk. Bioprocess and Biosystems Engineering 36(8), 1115–1123. https://doi.org/10.1007/s00449-012-0865-3.

 

  • Nguyen, Q.A., Cho, E., Trinh, L.T.P., Jeong, J.S. and Bae, H.J. (2017). Development of an integrated process to produce D-mannose and bioethanol from coffee residue waste. Bioresource Technology 244, 1039–1048. https://doi.org/10.1016/j.biortech.2017.07.169.
  • Otieno, O.D., Jakim, M.F., Geroge, O., and Jacob, M. (2022). Strategies for improving hydrolytic efficiency of crude multienzyme extracts in mushroom processing, Heliyon 8(11), e11312. https://doi.org/10.1016/j.heliyon.2022.e11312.

 

  • Park , H.S., Jun, S.C., Han, K.H., Hong, S.B., and Yu, J.H. (2017). Diversity, application, and synthetic biology of industrially important Aspergillus fungi. Advances in Applied Microbiology 100, 161–202. https://doi.org/10.1016/bs.aambs.2017.03.001.
  • Pandey, A. (2003). Solid-state fermentation, Biochemical Engineering Journal 13(2), 81–84. https://doi.org/10.1016/S1369-703X(02)00121-3.

 

  • Quintanar-Gómez, S. Arana-Cuenca, A., Mercado-Flores, Y., Gracida-Rodríguez, J.N. and Téllez-Jurado, A. (2012). Effect of particle size and aeration on the biological delignification of corn straw using Trametes sp. 44, BioResources 7(1), 327–344.
  • R Core Team (2023). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: https://www.r-project.org/.

 

  • Radenkovs, V., Juhnevica-Radenkova, K., Górnás, P. and Seglina D. (2018). Non-waste technology through the enzymatic hydrolysis of agro-industrial by-products, Trends in Food Science and Technology 77, 64–76. https://doi.org/10.1016/j.tifs.2018.05.013.
  • Raimbault, M. and Alazard, D. (1980). Culture method to study fungal growth in solid fermentation, European Journal of Applied Microbiology and Biotechnology 9, 199–209. https://doi.org/10.1300/J123v27n02_11.

 

  • Ramos-Villacob, V., Figueroa-Flórez, J.A., Salcedo-Mendoza, J.G., Hetnández-Ruydíaz, J.E. and Romero-Verbel, L.A. (2024). Development of modified cassava starches by ultrasound-assited amylose/lauric acid complex formation, Rev. Mex. Ing. Quim. 23(1), 1-15. https://doi.org/10.24275/rmiq/Alim24109.
  • Ravindran, R., Jaiswal, S., Abu-Ghannam, N. and Jauswal, A.K. (2017). Evaluation of ultrasound assisted potassium permanganate pre-treatment of spent coffee waste, Bioresource Technology 224, 680–687. https://doi.org/10.1016/j.biortech.2016.11.034.

 

  • Ravindran, R. Desmond, C., Jaiswal, S. and Jaiswal, A.M. (2018). Optimisation of organosolv pretreatment for the extraction of polyphenols from spent coffee waste and subsequent recovery of fermentable sugars, Bioresource Technology Reports https://doi.org/10.1016/j.biteb.2018.05.009.
  • Ristinmaa, A.S., Coleman, T., Cesar, L., Weinmann, A. L., Mazurkewich, S., Branden, G., Hasani, M., and Larsbrink, J. (2022). Structural diversity and substrate preferences of three tannase enzymes encoded by the anaerobic bacterium Clostridium butyricum. Journal of Biological Chemistry 298(4), 101758. https://doi.org/10.1016/j.jbc.2022.101758.

 

  • Rosero-Delgado, E. A. and Dustet-Mendoza, J.C.. (2017). Cinética de la fermentación en estado sólido de cascarilla de arroz y bagazo de caña con Auricularia auricula, ICIDCA. Sobre los Derivados de la Caña de Azúcar 51(1), 28–38.
  • Serna-Díaz, M.G., Mercado-Flores, Y., Jiménez-González, A., Anducho-Reyes, M.A., Medina-Marín, J., Seck Tuoh-Mora, J.C.and Téllez-Jurado, A. (2020). Use of barley straw as a support for the production of conidiospore of Trichoderma harzianum. Biotecnology Reports https://doi.org/10.1016/j.btre.2020.e00445

 

  • Singhania, R. R., Sukumaran, R.K., Patel, A.K. Larroche, C. and Pandey, A. (2010). Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases, Enzyme and Microbial Technology 46(7), 541–549. https://doi.org/10.1016/j.enzmictec.2010.03 .010.
  • Sluiter, A. Hames, B., Hyman, D., Payne, C., Ruiz, R. Scarlata, C., Sluiter, J., Templeton, D. and Wolfe, J. (2008). Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory.

 

  • Solarte-Toro, J.C., Chacón-Pérez, Y., Piedrahita-Rodríguez, S., Poveda-Giraldo, J.A., Teixeira, J.A., Moustakas, K.and Cardona-Alzate C.A. (2020). Effect of dilute sulfuric acid pretreatment on the physicochemical properties and enzymatic hydrolysis of coffee cut-stems, Energy 195. https://doi.org/10.1016/j.energy.2020.116986.
  • Wickham, H. (2016). Data Analysis. In: ggplot2. (H. Wickham, eds.), Pp. 189-201. Springer, Cham. https://doi.org/10.1007/978-3-319-24277-4_9.

 

  • Wickham, H., Francois, R., Henry, L., Muller, K. and Vaughan, D. (2022). dplyr: A Grammar of Data Manipulation. Available at: https://cran.r-project.org/package=dplyr.
  • Wood, I.P., Elliston, A., Ryden, P., Bancroft, I., Roberts, I.N., and Waldron, K.W. (2012). Rapid quantification of reducing sugars in biomass hydrolysates: Improving the speed and precision of the dinitrosalicylic acid assay. Biomass and Bioenergy 44(0), 117–121. https://doi.org/10.1016/j.biombioe.2012.05.003.

 

  • Zheng, W., Zheng, Q., Xue, Y., Hu, J. and Gao M.T. (2017). Influence of rice straw polyphenols on cellulase production by Trichoderma reesei, Journal of Bioscience and Bioengineering 123(6), 731–738. https://doi.org/10.1016/j.jbiosc.2017.01.009.
  • Zwietering, M. H., Jongenburger, I., Rombouts, F. M., y Riet, K. (1990). Modeling of the bacterial growth curve. Applied and Environmental Microbiology 56(6), 1875–1881. https://doi.org/10.1016/j.fm.2004.01.007.