Vol. 23, No. 3 (2024), IA24268 https://doi.org/10.24275/rmiq/IA24268


Evaluation of nitrification and denitrification in an activated sludge process through mass balance using GPS-X software


 

Authors

N.A. Medellín-Castillo, S. Arvizu-Vázquez, M. Gallegos-García, A. Hidalgo-Millán, M.A. Espinosa-Rodríguez


Abstract

During the biological treatment of the wastewater, chemical, and biological reactions occur under controlled conditions. The analysis of these reactions is complex due to the interaction developed by the microorganisms. The use of the mass balance represents a viable option to observe the behavior of the biological treatment of the wastewater. This work aimed to evaluate the degree of nitrification and denitrification in the activated sludge system of a wastewater treatment plant. The evaluation methodology was developed through the mass balance with the support of the GPS-X software. The mass balance of the biological treatment system under study showed that more nitrification is required in aerobic reactors and a greater volume of the anoxic zone for denitrification, since only 38% of the total nitrogen was removed. Alternatively, by simulating a new treatment model with the GPS-X software, it was possible to increase the total nitrogen removal efficiency from 38% to 81%. The parameters of alkalinity, pH, DO, T and SRT were very useful indicators to observe the nitrification and denitrification process in the activated sludge system.


Keywords

mass balance, nitrification, denitrification.


References

  • APHA (2005). Standard methods for the examination of water and wastewater. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC.
  • Carrera, J., Vicent, T. & Lafuente, J. (2004). Effect of influent COD/N ratio on biological nitrogen removal (BNR) from high-strength ammonium industrial wastewater. Process Biochemistry 39(12), 2035-2041. http://doi.org/10.1016/j.procbio.2003.10.005
  • D´Antoni, B., Iracá F. & Romero, M. (2017). Brief review on filamentous foaming and bulking in activated sludge treatments: Causes and mitigation actions. PantaRei Water Solutions, 1-10.  https://doi.org/10.13140/RG.2.2.29506.58560
  • Dionisi D. & Rasheed, A. (2018). Maximization of the organic load rate and minimization of oxygen consumption in aerobic biological wastewater treatment processes by manipulation of the hydraulic and solids residence time. Journal of Water Process Engineering 22, 138-146. https://doi.org/10.1016/j.jwpe.2018.02.002
  • Dlangamandla, C., Basitere, M., Ifeoluwa, B., Silas, B. & Karabo, S. (2021). Biofoam formation and defoamation in global wastewater treatment systems. Water Practice &. Technology 16 (1), 1-18. https://doi.org/10.2166/wpt.2020.113
  • DOF (2022). Norma oficial mexicana NOM-001-SEMARNAT-2021. Diario Oficial de la Federación, México.
  • Elawwad, A. (2018). Optimized biological nitrogen removal of high-strength ammonium wastewater by activated sludge modeling.  Journal of Water Reuse and Desalination 8(3), 393-403. https://doi.org/10.2166/wrd.2017.200
  • EPA (2009). Nutrient control design manual. EPA/600/R-09/012. Environmental Protection Agency, USA.
  • Espinosa, M. A., Delgado, R. & Hidalgo, A. (2020). Evaluación de un proceso anóxico-aerobio-reactor biológico de membrana con alto contenido de nitrógeno. Revista Internacional de Contaminación Ambiental 36(2), 303-320.  https://doi.org/10.20937/RICA.53111
  • Espósito, M., Blanco, M., Sequeira, M., Paoloni, J., Fernandez, S., Amiotti, N. & Díaz, S. (2016). Contaminación natural (As, F) y eutrofización (N, P) en la cuenca del arroyo el divisorio, Argentina. International Journal of Experimental Botany 85, 51-62.
  • Guevara, M. & Ramírez, L. (2015). Eichhornia crassipes, su invasividad y potencial fitorremediador. La Granja: Revista de Ciencias de la Vida 22(2), 5-11. DOI:10.17163/lgr.n22.2015.01
  • Gupta, R., Poddar, B., Nakhate, S., Chavan, A., Singh, A., Purohit, H. & Khardenavis, A. (2021). Role of heterotrophic nitrifiers and aerobic denitrifiers in simultaneous nitrification and denitrification process: a nonconventional nitrogen removal pathway in wastewater treatment. Letters in Applied Microbiology 74(2), 159-184. https://doi.org/10.1111/lam.13553
  • Hauduc, H., Rieger, L., Oehmen, A., van Loosdrecht, M., Comeau, Y., He´duit, A., Vanrolleghem, P.A. & Gillot, S. (2013). Critical review of activated sludge modeling: State of process knowledge, modeling concepts and limitations. Biotechnology and Bioengineering 110(1), 24-46. https://doi.org/10.1002/bit.24624
  • Henze, M., Gujer, W., Mino, T. & van Loosdrecht, M. (2006). Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. IWA Publishing, London UK.
  • Hreiz, R., Latifi, M. & Roche, N. (2015). Optimal design and operation of activated sludge processes: State-of-the-art. Chemical Engineering Journal 281, 900-920. http://dx.doi.org/10.1016/j.cej.2015.06.125
  • Hydromantis (2014). Software GPS-X. Environmental Software Solutions, INC. 
  • Ji, B., Yang, K., Zhu, L., Jiang, Y., Wang, H., Zhou, J. & Zhang, H. (2015). Aerobic denitrification: A review of important advances of the last 30 years. Biotechnology and Bioprocess Engineering 20, 643-651. https://doi.org/10.1007/s12257-015-0009-0
  • Kokina, K., Mezule, L., Gruskevica, K., Neilands, R., Golovko, K. & Juhna, T. (2022). Impact of rapid pH changes on activated sludge process. Applied Sciences 12(11), 5754. https://doi.org/10.3390/app12115754
  • Li, B. & Wu, G. (2014). Effects of sludge retention times on nutrient removal and nitrous oxide emission in biological nutrient removal processes. International Journal of Environmental Research and Public Health 11(4), 3553-3569. Available on line: https://doi.org/10.3390/ijerph110403553
  • Li, X., Yang, Y., Liu, G., Sun, D. & Ma, X. (2023). Enhanced nitrogen removal at low temperature with mixed anoxic/oxic process. Water Science and Technology 16(1), 67-75. https://doi.org/10.1016/j.wse.2022.08.005
  • Meijer, S., van der Spoel, H., Susanti, S., Heijnen, J. & van Loosdrecht, M. (2002). Error diagnostics and data reconciliation for activated sludge modelling using mass balances. Water Science & Technology 45(6), 145-156.  https://doi.org/10.2166/wst.2002.0102
  • Melgarejo, R., Rosales, D., Polo, M., Fernández, G., Morales, M., Pérez, S., Arce, M & Palmerín, D. (2022). Mathematical model to estimate volumetric oxygen transfer coefficient in bioreactors using conformable calculus. Revista Mexicana de Ingeniería Química 21(2), 1-18. https://doi.org/10.24275/rmiq/Bio2701
  • Merton, A. (2004). What SRT and MCRT mean to treatment plant design and operation. Water Environment & Technology 16(6), 65-66. https://www.jstor.org/stable/43888802
  • Mozumder, M. & Hossain, M. (2020). Interaction between biological nitrogen removal processes and operating parameters: A review. Journal of Scientific Research 12(4), 757-774. http://dx.doi.org/10.3329/jsr.v12i4.46092
  • Najman, K., Panglish, S. & Katayama, V. (2020). Effect of different parameters of the biological processes on the specific growth rate of nitrifying bacteria by means of mathematical models. Journal of Duhok University 23(2), 372-386.   https://doi.org/10.26682/csjuod.2020.23.2.30
  • Raboni, M., Viotti, P., Rada, E., Conti, F. & Boni, M. (2020). The sensitivity of a specific denitrification rate under the dissolved oxygen pressure. International Journal of Environmental Research and Public Health 17(24), 9366. https://doi.org/10.3390/ijerph17249366
  • Randall C.W. & Buth D. (1984). Nitrite build-up in activated sludge resulting from temperature effects. Journal Water Pollution Control Federation 56(9), 1039-1044.  https://www.jstor.org/stable/25042426
  • Rieger, L., Gillot, S., Langergraber, G., Ohtsuki, T., Shaw, A., Takács, I. & Winkler, S. (2013). Guidelines for using activated sludge models. IWA Publishing, London-New York. https://doi.org/10.2166/9781780401164
  • Romualdo, I., Hernández, A., González, G. & Beristain, R. (2022). Metabolic and kinetic changes of activated sludge because of failures in the aeration system in a WWTP. Revista Mexicana de Ingeniería Química 21(3), 1-7. https://doi.org/10.24275/rmiq/IA2914
  • Ronzano E. & Dapena J. L. (2002). Tratamiento Biológico de las Aguas Residuales. Díaz de Santos, S.A., Madrid España.
  • Sam, T., Le Roes-Hill, M., Hoosain, N. & Welz, P. (2022). Strategies for controlling filamentous bulking in activated sludge wastewater treatment plants: The old and the new. Water 14(20), 1-21. https://doi.org/10.3390/w14203223
  • Tchobanoglous, G., F., Burton F. & H. Stensel, H. (2003). Waste­water engineering, treatment and reuse. McGraw Hill, New York.
  • Van Loosdrecht M., López C., Meijer S., Hooijmans C. & Brdjanovic D. (2015). Twenty-five years of ASM1: past, present and future of wastewater treatment model­ling. Journal of Hydroinformatic 17 (5), 697-718. https://doi.org/10.2166/hydro.2015.006
  • Wang, Y., Zhang, Z., Yan, M., Gao, N., Yang, J. & Ren, M. H. (2010).  Impact of operating conditions on nitrogen removal using cyclic activated sludge technology (CAST). Journal Environment Science Health, part a, 45(3), 370–376.  https://doi.org/10.1080/10934520903467964
  • WEF (2008). Operation of municipal wastewater treatment plants. Water Environment Federation, USA.
  • WERF (2003). Methods for wastewater characterization in activated sludge modelling. Water Environment Research Federation, Alexandria, Virginia.
  • Zhang, J., Gilbert, D., Gooday, A., Levin, L., Naqvis, S., Middelburg, J., Scranton, M., Ekaus, W., Dewite, B., Oguz, T., Monteiro, P., Urban, E., Rabalais, N., Ittektots, V.,Kemp, W., Ulloa, O., Elmgren, R., Escobar, E., & Van der Plas. A. (2010). Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development. Biogeosciences 7, 1443-1467. https://doi.org/10.5194/bg-7-1443-2010
  • Zhou, Y., Zhu, Y., Zhu, J., Li, Ch. & Chen, G. (2023). A comprehensive review on wastewater nitrogen removal and its recovery processes. International Journal of Environmental Research and Public Health 20(4), 3429.  https://doi.org/10.3390/ijerph20043429
  • Zornoza, A., Avendaño, L., Aguado, D., Borrás, L. & Alonso, J. L. (2014). Análisis de las correlaciones entre la abundancia de bacterias nitrificantes, parámetros operacionales y físico-químicos relacionados con el proceso biológico de nitrificación en fangos activos.  Tecno Agua 5, 1-12.