Vol. 23, No. 3 (2024), IA24290 https://doi.org/10.24275/rmiq/IA24290


Evaluation of the biodegradation, mechanical and barrier properties of extruded corn starch/Agave tequilana fiber biocomposites as an alternative to packaging and single-use plastics


 

Authors

M.G. Iniestra-Galindo, F. Rodríguez-González, J.A. Mendoza-Pérez, E.F. Medina-Bañuelos, and B.M. Marín-Santibáñez


Abstract

In this work, we investigated the mechanical and water-vapor barrier properties, as well as the water solubility and biodegradability of biocomposites obtained by continuous extrusion made up of thermoplastic corn starch (TPS) reinforced with 1, 3, and 8 wt.% of /Agave tequilana fibers as an alternative to replace packaging polymers and single-use plastics. We show that increasing the content of Agave fibers in biocomposites up to 8 wt.% improves the elastic modulus by 136%, while water-vapor permeability and water solubility decrease by 29% and 17%, respectively. It is also shown that biocomposites are biodegradable in the soil since TPS/Agave tequilana fibers underwent the stages of deterioration, fragmentation, and assimilation, which are characteristics of the biodegradation process. Photographic records show that sheets lose their physical integrity over time due to the biodegradation of starch (matrix). The results suggest that biocomposites of thermoplastic corn starch reinforced with Agave fibers possess suitable mechanical and physicochemical properties to be used as an alternative to produce biodegradable plastic materials that can replace packaging and single-use synthetic plastics.


Keywords

Agave tequilana fibers, Corn starch, Continuous extrusion, biocomposites, biodegradation.


References

  • Ahmed, T., Shahid, M., Azeem, F., Rasul, I., Ali Shah, A., Noman, M., Hameed, A., Manzoor, N., Manzoor, I. and Muhammad, S. (2018). Biodegradation of plastics: current scenario and future prospects for environmental safety. Environmental Science and Pollution Research, 25, 7287-7298. https://doi.org/10.1007/s11356-018-1234-9.
  • Alanís-López, P., Pérez-González, J., Rendón-Villalobos, R., Jiménez-Pérez, A., and Solorza-Feria, J. (2011). Extrusion and Characterization of Thermoplastic Starch Sheets from “Macho” Banana. Journal of Food Science, 76(6), E465-E471. https://doi.org/10.1111/j.1750-3841.2011.02254.x.
  • Ali, S.A., Fariha, H., Abdul, H., and Safia, A. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26(3), 246-265. https://doi.org/10.1016/j.biotechadv.2007.12.005.
  • Aranda-García, F.J., González-Núñez, R., Jasso-Gastinel, C.F., and Mendizábal, E. (2015). Water Absorption and Thermomechanical Characterization of Extruded Starch/Poly(lactic acid)/Agave Bagasse Fiber Bioplastic Composites. International Journal of Polymer Science, 2015, 343294. https://doi.org/10.1155/2015/343294.
  • Bertoft, E. (2017). Understanding Starch Structure: Recent Progress. Agronomy, 7(3), 56; https://doi.org/10.3390/agronomy7030056.
  • Bertuzzi, M.A., Castro Vidaurre, E.F., Armada, M., and Gottifredi, J.C. (2007). Water vapor permeability of edible starch based films. Journal of Food Engineering, 80(3), 972-978. https://doi.org/10.1016/j.jfoodeng.2006.07.016.
  • Biagiotti, J., Puglia, D., and Kenny, J.M. (2004). A Review on Natural Fibre-Based Composites-Part I: Structure, Processing and Properties of Vegetable Fibres. Journal of Natural Fibers, 1(2), 37-68. https://doi.org/10.1300/J395v01n02_04.
  • Castro-Montoya, Y.A., Jacobo-Valenzuela, N., Delgad-Nieblas, C.I., Ruiz-Armenta, X.A., Heredia, J.B., Delgado-Murillo, S.A., Calderon-Castro, A., and Zazueta-Morales, J.J. (2024). Effect of the extrusion process on phytochemical, antioxidant, and cooking properties of gluten-free pasta made from broken rice and nopal. Revista Mexicana de Ingeniería Química, 23(1), Alim24149, 1-15. https://doi.org/10.24275/rmiq/Alim24149.
  • Cheng, H., Chen, L., McClements D.J., Yang, T., Zhang, Z., Ren., F., Mao, M., Tian, Y., and Jin, Z. (2021). Starch-based biodegradable packaging materials: A review of their preparation, characterization and diverse applications in the food industry. Trends in Food Science and Technology, 114, 70-82. https://doi.org/10.1016/j.tifs.2021.05.017.
  • Cornejo-Ramírez, Y.I., Martínez-Cruz, O., Del Toro-Sánchez, C.L., Wong-Corral, F.J., Borboa-Flores, J., and Cinco-Moroyoqui, F.J. (2018). The structural characteristics of starches and their functional properties, CyTA - Journal of Food, 16(1), 1003-1017. https://doi.org/10.1080/19476337.2018.1518343.
  • do Val Siqueira, L., La Fuente Arias, K.I., Chieregato Maniglia, B., and Tadini C. C. (2021). Starch-based biodegradable plastics: methods of production, challenges and future perspectives. Current Opinion in Food Science, 38, 122-130. https://doi.org/10.1016/j.cofs.2020.10.020.
  • dos Reis, R.C., Devilla, I.A., Oliveira, G.H.H., Côrrea, P. C., Ascheri, D. P. R., Souza, A.B.M., and Servulo, A.C.O. (2014). Mechanical properties, permeability and solubility of films composed of yam starch and glycerol. Interciencia: Revista de ciencia y tecnología de América, 39(6), 410-415. https://www.interciencia.net/wp-content/uploads/2017/11/410-c-DOS-REIS-6.pdf.
  • Escobar, D., Sala, A., Silvera, C., Harsipe, R., and Márquez, R. (2009). Películas biodegradables y comestibles desarrolladas en base a aislado de proteínas de suero lácteo: estudio de dos métodos de elaboración y del uso de sorbato de potasio como conservador. INNOTEC, 4, 33-36. https://doi.org/10.26461/04.07.
  • Filiciotto, L., and Rothenberg, G. (2021). Biodegradable plastics: Standards, policies, and Impacts. ChemSusChem, 14(1), 56-72. https://doi.org/10.1002/cssc.202002044.
  • Fitch-Vargas, P.R., Camacho-Hernández, I.L., Rodríguez-González, F.J., Martínez-Bustos, F., Calderón-Castro, A., Zazueta-Morales, J. de J., and Aguilar-Palazuelos E. (2023). Effect of compounding and plastic processing methods on the development of bioplastics based on acetylated starch reinforced with sugarcane bagasse cellulose fibers. Industrial Crops and Products, 192, 116084. https://doi.org/10.1016/j.indcrop.2022.116084.
  • Folino, A., Karageorgiou, A., Calabrò, P. S., and Komilis, D. (2020). Biodegradation of Wasted Bioplastics in Natural and Industrial Environments: A Review. Sustainability, 12(15), 6030; https://doi.org/10.3390/su12156030.
  • García-Guzmán, L., Cabrera-Barjas, G., Soria-Hernández, C. G., Castaño, J., Guadarrama-Lezama, A.Y., and Rodríguez Llamazares, S. (2022). Progress in Starch-Based Materials for Food Packaging Applications. Polysaccharides, 3(1), 136-177. https://doi.org/10.3390/polysaccharides3010007.
  • Idris, S.N., Amelia, T.S.M., Bhubalan, K., Lazim, A.M.M., Ahmad, N.A.M., Jamaluddin, Z.M.I., Santhanam, R., Amirul, A.-A.A., Vigneswari, S., and Ramakrishna, S. (2023). The degradation of single-use plastics and commercially viable bioplastics in the environment: A review. Environmental Research, 231(1), 115988. https://doi.org/10.1016/j.envres.2023.115988.
  • Ji, M., Li, F., Li, J., Li, J., Zhangc, C., Sun, K., and Guoa, Z. (2021). Enhanced mechanical properties, water resistance, thermal stability, and biodegradation of the starch-sisal fibre composites with various fillers. Materials and Design, 198, 109373. https://doi.org/10.1016/j.matdes.2020.109373.
  • Jiang, T., Duan, Q., Zhu, J., Liu, H., and Yu, L. (2020). Starch-based biodegradable materials: Challenges and opportunities. Advanced Industrial and Engineering Polymer Research, 3, 8-18. https://doi.org/10.1016/j.aiepr.2019.11.003.
  • Jiménez-Pérez, C., Gómez-Ruiz, L., González-Olivares, L. G., Fernández, F. J., and Cruz-Guerrero, A. E. (2023). Biodegradation of polystyrene with laccase-producing enterobacteria isolated from a municipal waste dump. Revista Mexicana de Ingeniería Química, 22(1), Bio2971, 1-8. https://doi.org/10.24275/rmiq/Bio2971.
  • Józó, M., Várdai, R., Bartos, A., Móczó, J., and Pukánszky, B. (2022). Preparation of Biocomposites with Natural Reinforcements: The Effect of Native Starch and Sugarcane Bagasse Fibers. Molecules, 27(19), 6423. https://doi.org/10.3390/molecules27196423.
  • Kim, S.R.B., Choi, Y.-G., Kim, J.-Y., and Lim, S.-T. (2015). Improvement of water solubility and humidity stability of tapioca starch film by incorporating various gums. LWT - Food Science and Technology, 64(1), 475-482. https://doi.org/10.1016/j.lwt.2015.05.009.
  • Ku, H., Wang, H., Pattarachaiyakoop, N., and Trada, M. (2011). A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering, 42(4), 856-873. https://doi.org/10.1016/j.compositesb.2011.01.010.
  • López, M.G., Mancilla-Margalli, N.A., and Mendoza-Diaz, G. (2003). Molecular Structures of Fructans from Agave tequilana Weber var. Azul. J. Agric. Food Chem., 51(27), 7835-7840. https://doi.org/10.1021/jf030383v.
  • López, O.V., García, M.A., and Zaritzky, N.E. (2008). Film forming capacity of chemically modified corn starches. Carbohydrate Polymers, 73(4), 573-581. https://doi.org/10.1016/j.carbpol.2007.12.023.
  • Majeed, K., Jawaid, M., Hassan, A., Abu Bakar, A., Abdul Khalil, H.P.S., Salema, A.A., and Inuwa, I. (2013). Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Materials and Design, 46, 391-410. https://doi.org/10.1016/j.matdes.2012.10.044.
  • Mark, J. E. (1999). Polymer Data Handbook. Oxford University Press, USA.
  • Maya, J.J., and Sabu, T. (2008). Biofibres and biocomposites. Carbohydrate Polymers, 71, 343-364. https://doi.org/10.1016/j.carbpol.2007.05.040.
  • Mohanty, A.K., Vivekanandhan, S., Pin, J.-M., and Misra, M. (2018). Composites from renewable and sustainable resources: Challenges and innovations. Science, 362(1), 536-542. https://doi.org/10.1126/science.aat9072.
  • Rosa, M.F., Chiou, B.-S., Medeiros, E.S., Wood, D.F., Mattoso, H.C., Orts, W.J., and Imam, S.H. (2009). Biodegradable Composites Based on Starch/EVOH/Glycerol Blends and Coconut Fibers. Journal of Applied Polymer Science, 111, 612-618. https://doi.org/10.1002/app.29062.
  • Samir, A., Ashour, F.H., Abdel Hakim, A.A., and Bassyouni, M. (2022). Recent advances in biodegradable polymers for sustainable applications. NPJ Materials Degradation, 6, 68. https://doi.org/10.1038/s41529-022-00277-7.
  • Surendren, A., Mohanty, A.K., Liu, Q., and Misra, M. (2022). A review of biodegradable thermoplastic starches, their blends and composites: recent developments and opportunities for single-use plastic packaging alternatives. Green Chem., 24, 8606-8636. https://doi.org/10.1039/D2GC02169B.
  • Tabasum, S., Younas, M., Zaeem, M.A., Majeed, I., Majeed, M., Noreen, A., Iqbal, M.N., and Zia, K.M. (2019). A review on blending of corn starch with natural and synthetic polymers, and inorganic nanoparticles with mathematical modeling. International Journal of Biological Macromolecules, 122, 969-996. https://doi.org/10.1016/j.ijbiomac.2018.10.092.
  • van Soest, J.J.G., Hulleman, S.H., de Wit, D., and Vliegenthart, J.F.G. (1996). Crystallinity in starch bioplastics. Industrial Crops and Products, 5(1), 11-22. https://doi.org/10.1016/0926-6690(95)00048-8.
  • van Soest, J.J.G., and Knooren, N. (1997). Influence of glycerol and water content on the structure and properties of extruded starch plastic sheets during aging. Journal of Applied Polymer Science, 64(7), 1411-1422. https://doi.org/10.1002/(SICI)1097-4628(19970516)64:7<1411::AID-APP21>3.0.CO;2-Y.
  • Wazeer, A., Das, A., Abeykoon, C., Sinha, A., and Karmakar, A. (2023). Composites for electric vehicles and automotive sector: A review. Green Energy and Intelligent Transportation, 2, 100043. https://doi.org/10.1016/j.geits.2022.100043.