Vol. 23, No. 3 (2024), IE24252 https://doi.org/10.24275/rmiq/IE24252


Preformed oil-in-water macroemulsions for oil recovery


 

Authors

O. Olivares-Xometl, P. Arellanes-Lozada, I. V. Lijanova, L. Azotla-Cruz, N. V. Likhanova


Abstract

Laboratory experiments were run by injecting 0.1 pore volume of emulsion slug of diluted oil-in-water emulsion at 1 wt. % of the dispersed oil phase through sandstone cores, imitating “single well” and “two well” injection. Oil displacement tests were carried out as part of a secondary recovery process, followed by the injection of an emulsion slug, and then again by water flooding to obtain additional oil recovery: 19 – 23 % for the “single well” test and up to 33 % for the “two-well” test, which was monitored through X-ray diffraction. A series of emulsion preparation tests was carried out to identify the best emulsifier, stirring time and rate, finally achieving an emulsion with average size of the dispersed droplets of 0.9 µm. The recovery percentage by emulsion injection is due to a soft blocking effect of the pore throats, where the emulsion is trapped, which changes the pattern of the preferential channels of water; as a consequence, water reaches areas that were not previously penetrated during the waterflooding operation as secondary recovery technique.


Keywords

oil-in-water emulsion, additional oil recovery, macroemulsion, Berea sandstone, tomography.


References

  • Baldygin, A., Nobes, D. S., & Mitra, S. K. (2014). Water-alternate-emulsion (WAE): A new technique for enhanced oil recovery. Journal of Petroleum Science and Engineering, 121, 167-173. https://doi.org/10.1016/j.petrol.2014.06.021
  • Cardenas, R. L., Harnsberger, B. G., & Jr, J. M. (1981). Emulsion oil recovery process usable in high temperature, high salinity formations (United States Patent US4270607A). https://patents.google.com/patent/US4270607A/en?q=Emulsion+oil+recovery+process+usable+in+high+temperature%2c+high+salinity+formations&oq=Emulsion+oil+recovery+process+usable+in+high+temperature%2c+high+salinity+formations
  • Castillo-Campos, E., Mugica-Álvarez, V., Roldán-Carillo, T. G., Olguín-Lora, P., Castorena-Cortés, G. T., & Universidad Autónoma Metropolitana. (2021). Modification of wettability and reduction of interfacial tension mechanisms involved in the release and enhanced biodegradation of heavy oil by a biosurfactant. Revista Mexicana de Ingeniería Química, 20(3), 1-15. https://doi.org/10.24275/rmiq/IA2427
  • de Castro Dantas, T. N., de Souza, T. T. C., Dantas Neto, A. A., Moura, M. C. P. de A., & de Barros Neto, E. L. (2017). Experimental Study of Nanofluids Applied in EOR Processes. Journal of Surfactants and Detergents, 20(5), 1095-1104. https://doi.org/10.1007/s11743-017-1992-2
  • de Farias, M. L., de Souza, A. L., da Silveira Carvalho, M. ., Hirasaki, G. ., & Miller, C. . (2012). A Comparative Study of Emulsion Flooding and other IOR Methods for Heavy Oil. SPE-152290-MS. https://doi.org/10.2118/152290-MS
  • Demikhova, I. I., Likhanova, N. V., Hernandez Perez, J. R., Falcon, D. A. L., Olivares-Xometl, O., Moctezuma Berthier, A. E., & Lijanova, I. V. (2016). Emulsion flooding for enhanced oil recovery: Filtration model and numerical simulation. Journal of Petroleum Science and Engineering, 143, 235-244. https://doi.org/10.1016/j.petrol.2016.02.018
  • Demikhova, I. I., Likhanova, N. V., Moctezuma, A. E., Hernandez Perez, J. R., Olivares-Xometl, O. ., & Lijanova, I. V. (2014). Improved Oil Recovery Potential by Using Emulsion Flooding. All Days, SPE-171146-MS. https://doi.org/10.2118/171146-MS
  • Ding, B., Yu, L., Dong, M., & Gates, I. (2019). Study of conformance control in oil sands by oil-in-water emulsion injection using heterogeneous parallel-sandpack models. Fuel, 244, 335-351. https://doi.org/10.1016/j.fuel.2019.02.021
  • Du, X., Liu, T., Xi, C., Wang, B., Qi, Z., Zhou, Y., Xu, J., Lin, L., Istratescu, G., Babadagli, T., & Li, H. A. (2023). Can hot water injection with chemical additives be an alternative to steam injection: Static and dynamic experimental evidence. Fuel, 331, 125751. https://doi.org/10.1016/j.fuel.2022.125751
  • Engelke, B., Carvalho, M. S., & Alvarado, V. (2013). Conceptual Darcy-Scale Model of Oil Displacement with Macroemulsion. Energy & Fuels, 27(4), 1967-1973. https://doi.org/10.1021/ef301429v
  • Ge, J., Sun, X., Liu, R., Wang, Z., & Wang, L. (2020). Emulsion Acid Diversion Agents for Oil Wells Containing Bottom Water with High Temperature and High Salinity. ACS Omega, 5(45), 29609-29617. https://doi.org/10.1021/acsomega.0c04767
  • Goswami, R., Chaturvedi, K. R., Kumar, R. S., Chon, B. H., & Sharma, T. (2018). Effect of ionic strength on crude emulsification and EOR potential of micellar flood for oil recovery applications in high saline environment. Journal of Petroleum Science and Engineering, 170, 49-61. https://doi.org/10.1016/j.petrol.2018.06.040
  • Guillen, V. R., Romero, M. I., Carvalho, M. D. S., & Alvarado, V. (2012). Capillary-driven mobility control in macro emulsion flow in porous media. International Journal of Multiphase Flow, 43, 62-65. https://doi.org/10.1016/j.ijmultiphaseflow.2012.03.001
  • Hamidi, H., Mohammadian, E., Asadullah, M., Azdarpour, A., & Rafati, R. (2015). Effect of ultrasound radiation duration on emulsification and demulsification of paraffin oil and surfactant solution/brine using Hele-shaw models. Ultrasonics Sonochemistry, 26, 428-436. https://doi.org/10.1016/j.ultsonch.2015.01.009
  • Hernandez-Perez, J., Likhanova, N., Lopez-Falcon, D., Olivares-Xometl, O., Munoz-Salazar, L., & Trejo-Zarraga, F. (2022). Efficient use of oil in water macroemulsions as enhanced oil recovery agents. Petroleum Science and Technology, 40(2), 201-216. https://doi.org/10.1080/10916466.2021.1992422
  • Hou, X., & Sheng, J. J. (2023). Properties, preparation, stability of nanoemulsions, their improving oil recovery mechanisms, and challenges for oil field applications—A critical review. Geoenergy Science and Engineering, 221, 211360. https://doi.org/10.1016/j.geoen.2022.211360
  • Jalilian, M., Tabzar, A., Ghasemi, V., Mohammadzadeh, O., Pourafshary, P., Rezaei, N., & Zendehboudi, S. (2019). An experimental investigation of nanoemulsion enhanced oil recovery: Use of unconsolidated porous systems. Fuel, 251, 754-762. https://doi.org/10.1016/j.fuel.2019.02.122
  • Jiang, K., Xiong, C., Ding, B., Geng, X., Liu, W., Chen, W., Huang, T., Xu, H., Xu, Q., & Liang, B. (2023). Nanomaterials in EOR: A Review and Future Perspectives in Unconventional Reservoirs. Energy & Fuels, 37(14), 10045-10060. https://doi.org/10.1021/acs.energyfuels.3c01146
  • Karambeigi, M. S., Abbassi, R., Roayaei, E., & Emadi, M. A. (2015). Emulsion flooding for enhanced oil recovery: Interactive optimization of phase behavior, microvisual and core-flood experiments. Journal of Industrial and Engineering Chemistry, 29, 382-391. https://doi.org/10.1016/j.jiec.2015.04.019
  • Kumar, G., Mani, E., & Sangwai, J. S. (2023). Impact of surface-modified silica nanoparticle and surfactant on the stability and rheology of oil-in-water Pickering and surfactant-stabilized emulsions under high-pressure and high-temperature. Journal of Molecular Liquids, 379, 121620. https://doi.org/10.1016/j.molliq.2023.121620
  • Kumar, N., Pal, N., & Mandal, A. (2021). Nanoemulsion flooding for enhanced oil recovery: Theoretical concepts, numerical simulation and history match. Journal of Petroleum Science and Engineering, 202, 108579. https://doi.org/10.1016/j.petrol.2021.108579
  • Lakatos, I., Lakatos-Szabó, J., Bódi, T., & Vágó, Á. (2008). New Alternatives of Water Shutoff Treatments: Application of Water Sensitive Metastable Systems. SPE-112403-MS. https://doi.org/10.2118/112403-MS
  • Lakatos, I., Tóth, J., Bauer, K., Lakatos-Szabó, J., Palásthy, Gy., & Wöltje, H. (2003). Comparative Study of Different Silicone Compounds as Candidates for Restriction of Water Production in Gas Wells. SPE-80204-MS. https://doi.org/10.2118/80204-MS
  • Lakatos, I., Tóth, J., Lakatos-Szabó, J., Kosztin, B., Palásthy, Gy., & Wöltje, H. (2002). Application of Silicone Microemulsion for Restriction of Water Production in Gas Wells. SPE-78307-MS. https://doi.org/10.2118/78307-MS
  • Liu, J., Liu, S., Zhong, L., Wang, P., Gao, P., & Guo, Q. (2023). Ultra-low interfacial tension Anionic/Cationic surfactants system with excellent emulsification ability for enhanced oil recovery. Journal of Molecular Liquids, 382, 121989. https://doi.org/10.1016/j.molliq.2023.121989
  • Liu, Z., Li, Y., Luan, H., Gao, W., Guo, Y., & Chen, Y. (2019). Pore scale and macroscopic visual displacement of oil-in-water emulsions for enhanced oil recovery. Chemical Engineering Science, 197, 404-414. https://doi.org/10.1016/j.ces.2019.01.001
  • Lu, X., & Wang, M. (2023). Shape and surface property effects on displacement enhancement by nanoparticles. International Journal of Mechanical Sciences, 255, 108471. https://doi.org/10.1016/j.ijmecsci.2023.108471
  • Mohamed, A. I. A., Hussein, I. A., Sultan, A. S., & Al-Muntasheri, G. A. (2018). Use of organoclay as a stabilizer for water-in-oil emulsions under high-temperature high-salinity conditions. Journal of Petroleum Science and Engineering, 160, 302-312. https://doi.org/10.1016/j.petrol.2017.10.077
  • Moradi, M., Kazempour, M., French, J. T., & Alvarado, V. (2014). Dynamic flow response of crude oil-in-water emulsion during flow through porous media. Fuel, 135, 38-45. https://doi.org/10.1016/j.fuel.2014.06.025
  • Narukulla, R., Ojha, U., & Sharma, T. (2020). Effect of NaCl concentration on stability of a polymer–Ag nanocomposite based Pickering emulsion: Validation via rheological analysis with varying temperature. RSC Advances, 10(36), 21545-21560. https://doi.org/10.1039/D0RA03199B
  • O. Olivares-Xometl, N V. Likhanova, I. V. Lijanova, P Arellanes-Lozada, J. Arriola-Morales, & J. López-Rodríguez. (2021). Injection of emulsions into cores packed Ottawa sand and Berea sandstone as a method for enhanced oil recovery. Revista Mexicana de Ingeniería Química, 20(3). https://doi.org/10.24275/rmiq/Ener2394
  • Ponce F., R. V., Alvarado, V., & Carvalho, M. S. (2017). Water-alternating-macroemulsion reservoir simulation through capillary number-dependent modeling. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(10), 4135-4145. https://doi.org/10.1007/s40430-017-0885-7
  • Santanna, V. C., Silva, A. C. M., Lopes, H. M., & Sampaio Neto, F. A. (2013). Microemulsion flow in porous medium for enhanced oil recovery. Journal of Petroleum Science and Engineering, 105, 116-120. https://doi.org/10.1016/j.petrol.2013.03.015
  • Schramm, L. L. (2006). Emulsions, Foams, and Suspensions: Fundamentals and Applications. Wiley. https://books.google.es/books?id=9JMrTZxPd2MC
  • ShamsiJazeyi, H., Miller, C. A., Wong, M. S., Tour, J. M., & Verduzco, R. (2014). Polymer-coated nanoparticles for enhanced oil recovery. Journal of Applied Polymer Science, 131(15), n/a-n/a. https://doi.org/10.1002/app.40576
  • Sharma, T., Kumar, G. S., Chon, B. H., & Sangwai, J. S. (2015). Thermal stability of oil-in-water Pickering emulsion in the presence of nanoparticle, surfactant, and polymer. Journal of Industrial and Engineering Chemistry, 22, 324-334.
  • Sharma, T., Velmurugan, N., Patel, P., Chon, B. H., & Sangwai, J. S. (2015). Use of Oil-in-water Pickering Emulsion Stabilized by Nanoparticles in Combination With Polymer Flood for Enhanced Oil Recovery. Petroleum Science and Technology, 33(17-18), 1595-1604. https://doi.org/10.1080/10916466.2015.1079534
  • Shupe, R. D., & Jr, J. M. (1981). Emulsion oil recovery process usable in high temperature, high salinity formations (United States Patent US4269271A). https://patents.google.com/patent/US4269271A/en
  • Wang, X., Wang, F., Taleb, M. A. M., Wen, Z., & Chen, X. (2022). A Review of the Seepage Mechanisms of Heavy Oil Emulsions during Chemical Flooding. Energies, 15(22), 8397. https://doi.org/10.3390/en15228397
  • Wang, Z., Babadagli, T., & Maeda, N. (2021). Preliminary Screening and Formulation of New Generation Nanoparticles for Stable Pickering Emulsion in Cold and Hot Heavy-Oil Recovery. SPE Reservoir Evaluation & Engineering, 24(01), 66-79. https://doi.org/10.2118/200190-PA
  • Xu, K., Zhu, P., Colon, T., Huh, C., & Balhoff, M. (2017). A Microfluidic Investigation of the Synergistic Effect of Nanoparticles and Surfactants in Macro-Emulsion-Based Enhanced Oil Recovery. SPE Journal, 22(02), 459-469. https://doi.org/10.2118/179691-PA
  • Yadali Jamaloei, B., & Kharrat, R. (2010). Analysis of Microscopic Displacement Mechanisms of Dilute Surfactant Flooding in Oil-wet and Water-wet Porous Media. Transport in Porous Media, 81(1), 1-19. https://doi.org/10.1007/s11242-009-9382-5
  • Yoon, K. Y., Son, H. A., Choi, S. K., Kim, J. W., Sung, W. M., & Kim, H. T. (2016). Core Flooding of Complex Nanoscale Colloidal Dispersions for Enhanced Oil Recovery by in Situ Formation of Stable Oil-in-Water Pickering Emulsions. Energy & Fuels, 30(4), 2628-2635. https://doi.org/10.1021/acs.energyfuels.5b02806
  • Yousufi, M. M., Elhaj, M. E. M., Moniruzzaman, M., Ayoub, M. A., Nazri, A. B. M., Husin, H. B., & Saaid, I. B. M. (2019). Synthesis and evaluation of Jatropha oil-based emulsified acids for matrix acidizing of carbonate rocks. Journal of Petroleum Exploration and Production Technology, 9(2), 1119-1133. https://doi.org/10.1007/s13202-018-0530-8
  • Zabar, M. K., Phan, C. M., & Barifcani, A. (2023). Quantifying the spontaneous emulsification of a heavy hydrocarbon with the presence of a strong surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 656, 130425. https://doi.org/10.1016/j.colsurfa.2022.130425
  • Zhang, L., Lei, Q., Luo, J., Zeng, M., Wang, L., Huang, D., Wang, X., Mannan, S., Peng, B., & Cheng, Z. (2019). Natural Halloysites-Based Janus Platelet Surfactants for the Formation of Pickering Emulsion and Enhanced Oil Recovery. Scientific Reports, 9(1), 163. https://doi.org/10.1038/s41598-018-36352-w
  • Zhang, Z., Wang, Y., Ding, M., Mao, D., Chen, M., Han, Y., Liu, Y., & Xue, X. (2023). Effects of viscosification, ultra-low interfacial tension, and emulsification on heavy oil recovery by combination flooding. Journal of Molecular Liquids, 380, 121698. https://doi.org/10.1016/j.molliq.2023.121698
  • Zhou, Y., Yin, D., Chen, W., Liu, B., & Zhang, X. (2019). A comprehensive review of emulsion and its field application for enhanced oil recovery. Energy Science & Engineering, 7(4), 1046-1058. https://doi.org/10.1002/ese3.354
  • Zhou, Y., Yin, D., Wang, D., & Gao, X. (2018). Emulsion particle size in porous media and its effect on the displacement efficiency. Journal of Dispersion Science and Technology, 39(10), 1532-1536. https://doi.org/10.1080/01932691.2017.1421082