Vol. 23, No. 3 (2024), Mat24245 https://doi.org/10.24275/rmiq/Mat24245


Study on wild grasses as a potential source of cellulose nanofibers


 

Authors

R. Herrera-Basurto, E. Ramos-López, A. Rodríguez-López, J.C. González-Olvera, J. Morales-Hernández, A. Hurtado-Macías, H.J. Vergara-Hernández, F. Mercader-Trejo


Abstract

A manufacturing process is described for obtaining cellulose nanofibers from pink weed (Rhynchelytrum repens) and foxtail (Bothriochloa laguroides) plants by physicochemical methods. These plants are considered weeds since they are discarded because they have no use as livestock feed, and both have minimal biotechnological utility. The physical-chemical characterization of the nanocellulose obtained from these sources were evaluated by infrared spectrometry, thermography, microscopy characterization, dynamic light scattering, and X-ray diffraction. The cellulose nanofibers from pink grass have a length of 1-10 μm and a diameter of 30-120 nm, similar to those previously reported from different plant sources. In the case of foxtail plants, fractal feature nano-objects with lengths less than 1.5 μm, and diameters in the 20-190 nm range were obtained. Notably, this geometry for cellulose nano-objects has not been reported previously. In addition, the crystallinity index was evaluated, obtaining values of 60% for both plants, and the crystal size was estimated using the Sherrer equation.


Keywords

Cellulose nanofibers, weedy plants, fractal structure.


References

  • Anusiya, G., & Jaiganesh, R. (2022). A review on fabrication methods of nanofibers and a special focus on application of cellulose nanofibers. Carbohydrate Polymer Technologies and Applications, 4, 100262. https://doi.org/10.1016/j.carpta.2022.100262.
  • Bolio-López, G.I., Valadez-González, A., Veleva, L., & Andreeva, A. (2011). Whiskers de celulosa a partir de residuos agroindustriales de banano: Obtención y caracterización. Revista mexicana de ingeniería química10(2), 291-299. Recuperado en 07 de noviembre de 2023, http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-27382011000200013&lng=es&tlng=es
  • Brinchi, L., Cotana, F., Fortunati, E., & Kenny, J. (2013). Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers, 94(1), 154-169. https://doi.org/10.1016/j.carbpol.2013.01.033.
  • Camarero Espinosa, S., Kuhnt, T., Foster, E. J., & Weder, C. (2013). Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis. Biomacromolecules, 14(4), 1223-1230. https://doi.org/10.1021/bm400219u.
  • Chen, Y., Fan, D., Han, Y., Lyu, S., Lu, Y., Li, G., ... & Wang, S. (2018). Effect of high residual lignin on the properties of cellulose nanofibrils/films. Cellulose, 25, 6421-6431. https://doi.org/10.1007/s10570-018-2006-x.
  • Chirayil, C. J., Mathew, L. and Thomas, S. (2014). Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Rev. Adv. Mater. Sci., vol. 37, no. 1–2, pp. 20–28.
  • Djafari Petroudy, S. R., Chabot, B., Loranger, E., Naebe, M., Shojaeiarani, J., Gharehkhani, S., Ahvazi, B., Hu, J., & Thomas, S. (2021). Recent advances in cellulose nanofibers preparation through energy-efficient approaches: A review. Energies, 14(20), 6792. https://doi.org/10.3390/en14206792.
  • De Morais Teixeira, E., A. C. Corrêa, A. Manzoli, F. de Lima Leite, C. de Ribeiro Oliveira, and L. H. C. Mattoso. (2010), Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose, 17, 3, 595–606. https://doi.org/10.1007/s10570-010-9403-0.
  • Dufresne, A. (2013). Nanocellulose: a new ageless bionanomaterial. Materials Today, 16(6), 220-227. https://doi.org/10.1016/j.mattod.2013.06.004.
  • Finch, C. A. (1985). Cellulose chemistry and its applications. British Polymer Journal, 17(3), 552. https://doi.org/10.1002/pi.4980170313.
  • Fleming, K., Gray, D. G., Matthews, S. (2001). Cellulose crystallites. Chemistry- A European Journal, 7(9), 1831-1836. https://doi.org/10.1002/1521-3765(20010504)7:9<1831::AID-CHEM1831>3.0.CO;2-S.
  • French, A. D., Pérez, S., Bulone, V., Rosenau, T. (2002). Encyclopedia of Polymer Science and Technology. Cellulose. 1838. https://doi.org/10.1002/0471440264.pst042.pub2
  • Gardner, K. H., & Blackwell, J. (2001). The structure of native cellulose. Biopolymers, 13(10), 1975-2001. https://doi.org/10.1002/bip.1974.360131005.
  • Garzón, M. de L., Tecante, A., Ramírez-Gilly, M., & Palacios, J. (2009). Comportamiento viscoelástico de disoluciones y tabletas hidratadas de hidroxipropilmetil celulosa, carboximetil celulosa sódica y sus mezclas. Rev. Mex. Ing. Quim.8(3), 307-318.
  • Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chemical Reviews, 110(6), 3479-3500. https://doi.org/10.1021/cr900339w.
  • Herrick, F. W., Casebier, R. L., Hamilton, J. K., and Sandberg, K. R. (1983). Microfibrillated cellulose: morphology and accessibility. United States.
  • Hospodarova, V., Singovszka, E., and Stevulova, N. (2018). Characterization of Cellulosic Fibers by FTIR Spectroscopy for Their Further Implementation to Building Materials. American Journal of Analytical Chemistry, 9, 303-310. https://doi.org/10.4236/ajac.2018.96023.
  • Hosur, M., Baah, D., Nuruddin, M., Jamal Uddin, M. and Jeelani, S. (2016). A novel approach for extracting cellulose nanofibers from lignocellulosic biomass by ball milling combined with chemical treatment. Wiley Online Libr. 133, 9, 42990.
  • Ifuku, S., Nogi, M., Abe, K., Handa, K. Nakatsubo, F. and Yano, H. (2007). Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS.  Biomacromolecules, 8(6), 1973–1978. https://doi.org/10.1021/bm070113b.
  • Ioelovich, M. (2008). Cellulose as a nanostructured polymer: A short review. BioResources, 3(4), 1403-1418. https://doi.org/10.15376/biores.3.4.ioelovich.
  • Isogai, A. (2020). Cellulose nanofibers: Recent progress and future prospects. Journal of Fiber Science and Technology, 76(10), 310-326. https://doi.org/10.2115/fiberst.2020-0039.
  • Javier-Astete, R., Jimenez-Davalos, J., Zolla, G. (2021). Determination of hemicellulose, cellulose, holocellulose and lignin content using FTIR in Calycophyllum spruceanum (Benth.) K. Schum. and Guazuma crinita Lam. PLoS ONE 16, e0256559. https://doi.org/10.1371/journal.pone.0256559.
  • Khalid, M. Y., Al Rashid, A., Arif, Z. U., Ahmed, W., & Arshad, H. (2021). Recent advances in nanocellulose-based different biomaterials: types, properties, and emerging applications. Journal of Materials Research and Technology, 14, 2601-2623. https://doi.org/10.1016/j.jmrt.2021.07.128.
  • Li, X., Wei, Y., Xu, J., Xu, N., and He, Y. (2018). Quantitative visualization of lignocellulose components in transverse sections of moso bamboo based on FTIR macro‑ and micro‑spectroscopy coupled with chemometrics. Biotechnology for Biofuels, 11, 263. https://doi.org/10.1186/s13068-018-1251-4.
  • Ltd, R. A. M. (s. f.). Global Nanocellulose Market - Forecast to 2030. Research and Markets ltd 2023. https://www.researchandmarkets.com/reports/5009171/global-nanocellulose-market-by-type-mfc-and-nfc [Accessed: 10-Apr-2023].
  • Mandelbrot, Benoit B. (2004). Fractals and Chaos: the Mandelbrot set and beyond (Vol. 3), New York: Springer. (2004).
  • Marchessault, R.H. (1962). Application of infra-red spectroscopy to cellulose and wood polysaccharides. Pure and Applied Chemistry, 5, 107 - 130.
  • Mauldin, R. D. and S. C., Williams. (1988). Hausdorff dimension in graph directed constructions, Transactions of the American Mathematical Society, 309(2), 811-829. https://doi.org/10.2307/2000940.
  • Nair, S. S., Zhu, J. Y., Deng, Y., & Ragauskas, A. J. (2014). Characterization of cellulose nanofibrillation by micro grinding. Journal of Nanoparticle Research, 16(4). https://doi.org/10.1007/s11051-014-2349-7.
  • Ponce-Reyes, C. E., Chanona-Pérez, J. J., Garibay-Febles, V., Palacios-González, E., Karamath, J., Terrés-Rojas, E., & Calderón-Domínguez, G. (2014). Preparation of cellulose nanoparticles from agave waste and its morphological and structural characterization. Revista Mexicana De Ingeniería Química, 13(3), 897–906. https://www.scielo.org.mx/pdf/rmiq/v13n3/v13n3a21.pdf.
  • Postek, M., Moon, R., Rudie, A. and Bilodeau, M. (2013) “Production and applications of cellulose”. Tappi Press. Peachtree Corners.
  • Raspolli Galleti, A. M., D’Alessio, A., Licursi, D., Antonetti, C., Valentini, G., Galia, A., and Nassi o Di Nasso, N. (2015). Midinfrared FT-IR as a Tool for Monitoring Herbaceous Biomass Composition and Its Conversion to Furfural. Journal of Spectroscopy, 2015, 1-12. https://doi.org/10.1155/2015/719042.
  • Ruiz-Palomero, C., Soriano, M. L., & Valcárcel, M. (2017). Nanocellulose as analyte and analytical tool: Opportunities and challenges. TrAC Trends in Analytical Chemistry, 87, 1-18. https://doi.org/10.1016/j.trac.2016.11.007.
  • Segal, L., Creely, J. J., Martin, A. E. and Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer, Text. Res., 29, 786-794.
  • Shaghaleh, H., Xu, X., & Wang, S. (2018). Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC advances, 8(2), 825-842. https://doi.org/10.1039/C7RA11157F.
  • Soni, B., Hassan, E. B., & Mahmoud, B. (2015). Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydrate Polymers, 134, 581-589. https://doi.org/10.1016/j.carbpol.2015.08.031.
  • Thomas, P., Duolikun, T., Rumjit, N. P., Moosavi, S., Lai, C. W., Bin Johan, M. R., & Fen, L. B. (2020). Comprehensive review on nanocellulose: Recent developments, challenges and future prospects. Journal of the Mechanical Behavior of Biomedical Materials, 110, 103884. https://doi.org/10.1016/j.jmbbm.2020.103884.
  • Trache, D., Tarchoun, A. F., Derradji, M., Hamidon, T. S., Masruchin, N., Brosse, N., & Hussin, M. H. (2020). Nanocellulose: From Fundamentals to Advanced Applications. Frontiers in Chemistry, 8. https://doi.org/10.3389/fchem.2020.00392.
  • Turbak, A F, Snyder, F W, and Sandberg, K R. (1983). Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. United States.
  • Wang, X., Song, Z., Gao, Q., and Song, R. (2020). Study on the fractal structure of carbon nanomaterials' smokescreen.  In IOP Conference Series: Materials Science and Engineering, Vol. 892, No. 1, p. 012010. https://10.1088/1757-899X/892/1/012010.
  • Winter, A., Andorfer, L., Herzele, S., Zimmermann, T., Saake, B., Edler, M., Griesser, T., Konnerth, J., & Gindl-Altmutter, W. (2017). Reduced polarity and improved dispersion of microfibrillated cellulose in poly (lactic-acid) provided by residual lignin and hemicellulose. Journal of materials science, 52, 60-72. https://doi.org/10.1007/s10853-016-0439-x.