Vol. 23, No. 3 (2024), Mat24264 https://doi.org/10.24275/rmiq/Mat24264


Structural and chemical analysis of Zn ion exchange in thermally modified zeolite A4


 

Authors

J.E. Leal-Perez, J.L. Almaral-Sanchez, A. Hurtado-Macias, M. Cortez-Valadez, A. Bórquez-Mendívil, B.A. García-Grajeda, J.M. Mendivil-Escalante, J. Flores-Valenzuela


Abstract

This work reports the analysis of Zn ion exchange in thermally modified zeolite A4 (ZA4) for the potential formation of ZnO nanoparticles. The methodology consists of two steps. Step 1 consisted of carrying out different thermal treatments on ZA4. Step 2 involved the ion exchange of Zn with different concentrations of the Zn ion precursor. XRD and FTIR analyses revealed a transformation in the crystal and molecular structure of ZA4 after heat treatment. This work has been limited to studying ion exchange; however, it is very interesting to study the thermal behavior of ZA4 because this could improve the surface area of the material. The results obtained in this work demonstrate that heat treatment and Zn ion concentration affect the crystallinity and molecular structure of ZA4.


Keywords

Zn, zeolite A4, heat treatment, structural analysis.


References

  • Almutairi, S. M. T., Mezari, B., Magusin, P. C. M. M., Pidko, E. A., & Hensen, E. J. M. (2012). Structure and reactivity of Zn-Modified ZSM-5 zeolites: The importance of clustered cationic Zn complexes. ACS Catalysis, 2(1), 71–83. https://doi.org/10.1021/cs200441e
  • Aronne, A., Esposito, S., Ferone, C., Pansini, M., & Pernice, P. (2002). FTIR study of the thermal transformation of barium-exchanged zeolite A to celsian. Journal of Materials Chemistry, 12(10), 3039–3045. https://doi.org/10.1039/b203859e
  • Ashokkumar, M., & Muthukumaran, S. (2014). Microstructure, optical and FTIR studies of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method. Optical Materials, 37(C), 671–678. https://doi.org/10.1016/j.optmat.2014.08.012
  • Ates, A., & Hardacre, C. (2012). The effect of various treatment conditions on natural zeolites: Ion exchange, acidic, thermal and steam treatments. Journal of Colloid and Interface Science, 372(1), 130–140. https://doi.org/10.1016/j.jcis.2012.01.017
  • Borda, J., Torres, R., & Lapidus, G. (2022). Selective leaching of zinc and lead from electric arc furnace dust using citrate and H2SO4 solutions. A kinetic perspective. Revista Mexicana de Ingeniera Quimica, 21(1). https://doi.org/10.24275/rmiq/cat2606
  • Breck, D. W., Eversole, W. G., & Milton, R. M. (1956). New synthetic crystalline zeolites. Journal of the American Chemical Society, 78(10), 2338–2339. https://doi.org/10.1021/ja01591a082
  • Colella, C. (1996). Ion exchange equilibria in zeolite minerals. Mineralium Deposita, 31(6), 554–562. https://doi.org/10.1007/BF00196136
  • Collins, F., Rozhkovskaya, A., Outram, J. G., & Millar, G. J. (2020). A critical review of waste resources, synthesis, and applications for Zeolite LTA. Microporous and Mesoporous Materials, 291, 109667. https://doi.org/10.1016/j.micromeso.2019.109667
  • Eichhorn, H. (1858). On the reactions of silicates with dilute solutions of salts. Pogendorf’s. Ann. Phys, 105, 126.
  • Eroglu, N., Emekci, M., & Athanassiou, C. G. (2017, August 1). Applications of natural zeolites on agriculture and food production. Journal of the Science of Food and Agriculture. John Wiley & Sons, Ltd. https://doi.org/10.1002/jsfa.8312
  • Flores-Valenzuela, J., Leal-Perez, J. E., Almaral-Sanchez, J. L., Hurtado-Macias, A., Borquez-Mendivil, A., Vargas-Ortiz, R. A., … Cortez-Valadez, M. (2023). Structural Analysis of Cu+ and Cu2+ Ions in Zeolite as a Nanoreactor with Antibacterial Applications. ACS Omega, 4, 0. https://doi.org/10.1021/acsomega.3c03869
  • Gans, R. (1905). Zeolites and similar compounds, their constitution and meaning for technology and agriculture. Jahrbuch Der Königlich Preussischen Geologischen Landesanstalt, 26, 179.
  • García-Molina, R., Suárez-Velázquez, G. G., Pech-Rodríguez, W. J., Ordóñez, L. C., Melendez-Gonzalez, P. C., Sánchez-Padilla, N. M., & González-Quijano, D. (2024). Soft chemistry synthesis of size-controlled ZnO nanostructures as photoanode for dye-sensitized solar cell. Revista Mexicana de Ingeniería Química, 23(2), IE24235. https://doi.org/https://doi.org/10.24275/rmiq/IE24235
  • Ginting, S. B., Yulia, Y., Wardono, H., Darmansyah, Hanif, M., & Iryani, D. A. (2019). Synthesis and Characterization of Zeolite Lynde Type A (LTA): Effect of Aging Time. In Journal of Physics: Conference Series (Vol. 1376, p. 012041). IOP Publishing. https://doi.org/10.1088/1742-6596/1376/1/012041
  • Hasanpoor, M., Aliofkhazraei, M., & Hamid Delavari, H. (2016). In-situ study of mass and current density for electrophoretic deposition of zinc oxide nanoparticles. Ceramics International, 42(6), 6906–6913. https://doi.org/10.1016/j.ceramint.2016.01.076
  • He, M., Liu, T. Z., Qiu, M. H., Zhang, Z. H., Zhu, Y. Z., Song, Z., & Xiu, J. L. (2015). Study on the optical properties of ErBa3B9O18crystals. Physica B: Condensed Matter, 456, 100–102. https://doi.org/10.1016/j.physb.2014.08.037
  • Hoveyda, A. H., & Zhugralin, A. R. (2007, November 8). The remarkable metal-catalysed olefin metathesis reaction. Nature. Nature Publishing Group. https://doi.org/10.1038/nature06351
  • Julbe, A., & Drobek, M. (2016). Zeolite T Type. Encyclopedia of Membranes, 2058–2059. https://doi.org/10.1007/978-3-662-44324-8_606
  • Leal-Perez, J. E., Flores-Valenzuela, J., Cortez-Valadez, M., Hurtado-Macías, A., Vargas-Ortiz, R. A., Bocarando-Chacon, J. G., & Almaral-Sánchez, J. L. (2022). Optical properties of copper clusters in zeolite 4A with surface enhanced Raman spectroscopy applications. Applied Physics A: Materials Science and Processing, 128(8), 649. https://doi.org/10.1007/s00339-022-05785-6
  • Leal-Perez, J. E., Flores-Valenzuela, J., Vargas-Ortíz, R. A., Alvarado-Beltrán, C. G., Hurtado-Macias, A., & Almaral-Sánchez, J. L. (2022). Synthesis of Cu2S Ultrasmall Nanoparticles in Zeolite 4A Nanoreactor. Journal of Cluster Science, 1–6. https://doi.org/10.1007/s10876-022-02330-6
  • Luzgin, M. V., Rogov, V. A., Arzumanov, S. S., Toktarev, A. V., Stepanov, A. G., & Parmon, V. N. (2008). Understanding Methane Aromatization on a Zn-Modified High-Silica Zeolite. Angewandte Chemie, 120(24), 4635–4638. https://doi.org/10.1002/ange.200800317
  • Mozgawa, W., Król, M., & Barczyk, K. (2011). FT-IR studies of zeolites from different structural groups. Chemik, 65(7), 671–674.
  • Ostroski, I. C., Barros, M. A. S. D., Silva, E. A., Dantas, J. H., Arroyo, P. A., & Lima, O. C. M. (2009). A comparative study for the ion exchange of Fe(III) and Zn(II) on zeolite NaY. Journal of Hazardous Materials, 161(2–3), 1404–1412. https://doi.org/10.1016/j.jhazmat.2008.04.111
  • Rajendran, N. K., Kumar, S. S. D., Houreld, N. N., & Abrahamse, H. (2018). A review on nanoparticle based treatment for wound healing. Journal of Drug Delivery Science and Technology, 44, 421–430. https://doi.org/10.1016/j.jddst.2018.01.009
  • Raoufi, D. (2013). Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method. Renewable Energy, 50, 932–937. https://doi.org/10.1016/j.renene.2012.08.076
  • Reyes-Zambrano, S. J., Lecona-Guzmán, C. A., Luján-Hidalgo, M. C., & Gutiérrez-Miceli, F. A. (2024). Stimulation of morphometric parameters and zinc content of native maize by priming with zinc oxide phytonanoparticles. Revista Mexicana de Ingeniería Química, 23(1), 1–12. https://doi.org/10.24275/rmiq/bio24160
  • Şen, S., Bardakçi, B., Yavuz, A. G., & Gök, A. U. (2008). Polyfuran/zeolite LTA composites and adsorption properties. European Polymer Journal, 44(8), 2708–2717. https://doi.org/10.1016/j.eurpolymj.2008.05.018
  • Šponer, J. E., Sobalík, Z., Leszczynski, J., & Wichterlová, B. (2001). Effect of metal coordination on the charge distribution over the cation binding sites of zeolites. A combined experimental and theoretical study. Journal of Physical Chemistry B, 105(35), 8285–8290. https://doi.org/10.1021/jp010098j
  • Warren, B. E. (1941). X-ray diffraction methods. Journal of Applied Physics, 12(5), 375–383. https://doi.org/10.1063/1.1712915
  • Whittig, L. D., & Allardice, W. R. (2018). X-ray diffraction techniques. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods (pp. 331–362). John Wiley & Sons, Ltd. https://doi.org/10.2136/sssabookser5.1.2ed.c12
  • Williams, D. B., & Carter, C. B. (1996). The Transmission Electron Microscope. In Transmission Electron Microscopy (pp. 3–17). Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2519-3_1
  • Xiong, G., Pal, U., Serrano, J. G., Ucer, K. B., & Williams, R. T. (2006). Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective. Physica Status Solidi C, 3(10), 3577–3581. https://doi.org/10.1002/pssc.200672164
  • Yan, M., Luo, S. D., Schaffer, G. B., & Qian, M. (2012). TEM and XRD characterisation of commercially pure α-Ti made by powder metallurgy and casting. Materials Letters, 72, 64–67. https://doi.org/10.1016/j.matlet.2011.12.072
  • Yörükoǧullar, E., Yilmaz, G., & Dikmen, S. (2010). Thermal treatment of zeolitic tuff. In Journal of Thermal Analysis and Calorimetry (Vol. 100, pp. 925–928). Akadémiai Kiadó, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic Publishers B.V. https://doi.org/10.1007/s10973-009-0503-8