Vol. 23, No. 3 (2024), Mat24306 https://doi.org/10.24275/rmiq/Mat24306


Parametric analysis about the synthesis of metakaolin-based geopolymers


 

Authors

M.A. Montañez-Cervantes, R. Gonzalez-Nuñez, R. Huirache-Acuña, A.J. Castro-Montoya


Abstract

Geopolymers are materials synthesized from aluminosilicates activated by an alkaline agent, which leads to their setting and hardening, providing a material with excellent ceramic properties. The chemical formula of the geopolymers: Mn{-(SiO2)z-AlO2}nwH2O, where M is a cation, n is the polycondensation rate, z is the number of silicon units and w are water molecules present in the structure. The name of the material and its mechanical properties vary as a function of the number of silicon units. This research analyzes the effect of potassium hydroxide concentration and silicon units as variables in the application of the design of experiments (DoE) method, the mechanical properties of compressive strength and Young’s modulus were analyzed as a process response. The results showed that the geopolymer presented better mechanical properties of Young's modulus and compressive strength, when z = 2, in addition, an increase in compressive strength values was observed when increasing the molar concentration of the geopolymer mixture for z = 1 and z = 2. Finally, it was found that the highest compressive strength value is 31.03 ± 0.31 MPa for z = 2 and 14 M values, additionally, FTIR and XRD analyses were carried out to obtain information about physiochemistry properties.


Keywords

polysialates, ceramics, alkaline activation, inorganic materials, alternative cement, geopolymer.


References

  • Ahmed, H. U., Mohammed, A. A., Rafiq, S., Mohammed, A. S., Mosavi, A., Sor, N. H., and Qaidi, S. M. A. (2021). Compressive Strength of Sustainable Geopolymer Concrete Composites: A State-of-the-Art Review. Sustainability, 13(24), 13502. DOI: https://doi.org/10.3390/su132413502
  • Ahmed, D. A., El-Apasery, M. A., Aly, A. A., and Ragai, S. M. (2023b). Green Synthesis of the Effectively Environmentally Safe Metakaolin-Based Geopolymer for the Removal of Hazardous Industrial Wastes Using Two Different Methods. Polymers, 15(13), 2865. DOI: https://doi.org/10.3390/polym15132865  
  • Agredo, J. T., and De Gutiérrez, R. M. (2007). Influence of the mineralogical composition of kaolins on the performance of added mortars with mk. Dyna, 74(153), 61-67. ISSN 0012-7353
  • Alonso, P. R., Pintos, S., Freire, L., Guzmán, G. J., Fernández, J., Lago, J. M., and Trancón, C. (2020). Geopolímeros celulares: desarrollo de hormigones ligeros ecológicos sin cemento (proyecto GEOCEL). Materiales Compuestos, 4(3), 52-58. 12
  • Características de los materiales N-CMT-2-02-001/02. Available from: http://normas.imt.mx/normativa/N-CMT-2-02-001-02.pdf  [cited 2023 may 19].
  • Chuewangkam, N., Nachaithong, T., Chanlek, N., Thongbai, P., and Pinitsoontorn, S. (2022). Mechanical and Dielectric Properties of Fly Ash Geopolymer/Sugarcane Bagasse Ash Composites. Polymers, 14(6), 1140. DOI: https://doi.org/10.3390/polym14061140
  • Cioffi, R., Maffucci, L., and Santoro, L. (2003). Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue. Resources, Conservation And Recycling, 40(1), 27-38. DOI: https://doi.org/10.1016/s0921-3449(03)00023-5
  • Davidovits, J. (1994). Properties of geopolymer cement. First International Conference on Alkaline Cements and Concretes. Vol. 1 [cited 2023 May 21]. Available from: https://www.geopolymer.org/dl/?x=pdf&get=KIEV.pdf
  • Davidovits, J., and Orlinski, J. (2000) '99 Geopolymer International Conference Proceedings. Geopolymer Institute. [cited 2023 May 21] Available at: https://www.geopolymer.org/news/geopolymere-99-2nd-international-conference-france/
  • De Belie, N., Soutsos, M., and Gruyaert, E. (2018). Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials. En RILEM state-of-the-art reports. DOI: https://doi.org/10.1007/978-3-319-70606-1
  • Fu, B., Cheng, Z., Han, J., and Li, N. (2021). Understanding the Role of Metakaolin Towards Mitigating the Shrinkage Behavior of Alkali-Activated Slag. Materials, 14(22), 6962. DOI: https://doi.org/10.3390/ma14226962
  • Guzmán-Aponte, L. A., De Gutiérrez, R. M., and Maury-Ramírez, A. (2019b). Physico-chemical performance of a metakaolin geopolymer added with TiO2 particles. Revista Colombiana de Materiales, 13, 1-8.
  • Hossain, S. S., and Akhtar, F. (2023). Recent progress of geopolymers for carbon dioxide capture, storage and conversion. Journal Of CO2 Utilization, 78, 102631. DOI: https://doi.org/10.1016/j.jcou.2023.102631
  • İlcan, H., Demirbas, A., Ulugöl, H., and Şahmaran, M. (2024). Low-alkaline activated construction and demolition waste-based geopolymers. Construction And Building Materials, 411, 134546. DOI: https://doi.org/10.1016/j.conbuildmat.2023.134546
  • Jaya, N. A., Yun-Ming, L., Abdullah, M. M. A. B., Cheng-Yong, H., and Kamarudin, H. (2018). Effect of Sodium Hydroxide Molarity on Physical, Mechanical and Thermal Conductivity of Metakaolin Geopolymers. IOP Conference Series: Materials Science And Engineering, 343, 012015. DOI: https://doi.org/10.1088/1757-899x/343/1/012015
  • Kang, H. J., Ryu, G. S., Koh, G. T., Kang, S. T., & Park, J. J. (2010b). Relationship between Microscopic Structures and Compressive Strength of Alkali-Activated Fly Ash Mortar. Key Engineering Materials, 452-453, 737-740. DOI: https://doi.org/10.4028/www.scientific.net/kem.452-453.737
  • Le, V. S., Sharko, A., Шарко, О., Stepanchikov, D., Ercoli, R., Nguyen, T., Tran, D. H., Buczkowska, K. E., Dančová, P., Łoś, P., and Louda, P. (2023). Multi-criteria Optimization of Geopolymer Foam Composition. Journal Of Materials Research And Technology, 26, 9049-9062. DOI: https://doi.org/10.1016/j.jmrt.2023.09.199  
  • Louati, S., Baklouti, S., and Samet, B. (2016). Acid-based geopolymerization kinetics: Effect of clay particle size. Applied Clay Science, 132-133, 571-578. DOI: https://doi.org/10.1016/j.clay.2016.08.007
  • Marín-López, C., Reyes-Araiza, J. L., Manzano-Ramı́Rez, A., Avalos, J. C. R., De Jesús Pérez Bueno, J., Muñiz-Villareal, M. S., Ventura-Ramos, E., and Vorobiev, Y. V. (2009). Synthesis and characterization of concrete based on metakaolin geopolymer. Inorganic Materials, 45(12), 1429-1432. DOI: https://doi.org/10.1134/s0020168509120231
  • Meftah, M., Oueslati, W., Chorfi, N., and Amara, A. B. H. (2016). Intrinsic parameters involved in the synthesis of metakaolin based geopolymer: Microstructure analysis. Journal Of Alloys and Compounds, 688, 946-956. DOI: https://doi.org/10.1016/j.jallcom.2016.07.297
  • Meshram, R. B., & Kumar, S. (2022). Comparative life cycle assessment (LCA) of geopolymer cement manufacturing with Portland cement in Indian context. International Journal of Environmental Science and Technology, 19(6), 4791-4802. DOI: https://doi.org/10.1007/s13762-021-03336-9
  • Muñiz-Villarreal, Manzano-Ramı́Rez, A., Sampieri-Bulbarela, S., Gasca-Tirado, J. R., Reyes-Araiza, J. L., Rubio-Ávalos, J., Pérez-Bueno, J., Apátiga, L., Zaldívar-Cadena, A., and Amigó, V. (2011). The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer. Materials Letters, 65(6), 995-998. DOI: https://doi.org/10.1016/j.matlet.2010.12.049
  • Nie, S., Zhou, J., Yang, F., Lan, M., Li, J., Zhang, Z., Chen, Z., Xu, M., Li, H., and Sanjayan, J. G. (2022). Analysis of theoretical carbon dioxide emissions from cement production: Methodology and application. Journal Of Cleaner Production, 334, 130270. DOI: https://doi.org/10.1016/j.jclepro.2021.130270
  • Nuruddin, M. F., Malkawi, A. B., Fauzi, A., Mohammed, B. S., and Al-Mattarneh, H. (2016). Evolution of geopolymer binders: a review. IOP Conference Series: Materials Science and Engineering, 133, 012052. DOI: https://doi.org/10.1088/1757-899x/133/1/012052   
  • Oliveira, M. F., and Lameiras, F. S. (2022). Mix design formulation range for metakaolin-based geopolymer synthesis. REM - International Engineering Journal, 75(3), 225-234. DOI: https://doi.org/10.1590/0370-44672021750038
  • Oviedo-Sánchez, K., and De Gutiérrez, R. M. (2019). Geopolymeric Mortar for Potential Use as a Concrete Coating. Revista EIA, 16(31), 159-170. DOI: https://doi.org/10.24050/reia.v16i31.1243
  • Perera, D. S., Hanna, J. V., Davis, J., Blackford, M. G., Latella, B. A., Sasaki, Y., and Vance, E. R. (2008). Relative strengths of phosphoric acid-reacted and alkali-reacted metakaolin materials. Journal Of Materials Science, 43(19), 6562-6566. DOI: https://doi.org/10.1007/s10853-008-2913-6
  • Ribeiro, R. A. S., Ribeiro, M. G. S., Kutyla, G. P., and Kriven, W. M. (2019). Amazonian Metakaolin Reactivity for Geopolymer Synthesis. Advances In Materials Science and Engineering, 2019, 1-7. DOI: https://doi.org/10.1155/2019/8950764
  • Rożek, P., Król, M., and Mozgawa, W. (2019). Geopolymer-zeolite composites: A review. Journal Of Cleaner Production, 230, 557-579. DOI: https://doi.org/10.1016/j.jclepro.2019.05.152
  • Salimi, J., and Salimi, F. (2016). CO2 capture by water-based Al2O3 and Al2O3-SiO2 mixture nanofluids in an absorption packed column. Revista Mexicana de Ingeniería Química, 15(1), 185-192. DOI: https://doi.org/10.1016/j.jclepro.2021.130270
  • Tchadjié, L., and Ekolu, S. O. (2017). Enhancing the reactivity of aluminosilicate materials toward geopolymer synthesis. Journal Of Materials Science, 53(7), 4709-4733. DOI: https://doi.org/10.1007/s10853-017-1907-7
  • Torres-Ochoa, A., Osornio-Rubio, N., Jiménez-Islas, H., Navarrete-Bolaños, J., and Martínez-González, G. (2018b). Synthesis of a geopolymer and use of response surface methodology to optimize the bond strength to red brick for improving the internal coating in burner kilns. Revista Mexicana de Ingeniería Química, 19(1), 361-373. DOI: https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/torreso
  • Villaquirán, M. A., Rodríguez, E. D., and Gutiérrez, R. M. (2014). Evolución térmica de sistemas compuestos geopoliméricos binarios basados en metacaolín con la incorporación de fuentes de sílice alternativas. Revista Colombiana de Materiales, 5, 17-23. https://revistas.udea.edu.co/index.php/materiales/article/download/19251/16537
  • You, S., Ho, S. W., Li, T., Maneerung, T., and Wang, C. (2019). Techno-economic analysis of geopolymer production from the coal fly ash with high iron oxide and calcium oxide contents. Journal Of Hazardous Materials, 361, 237-244. DOI: https://doi.org/10.1016/j.jhazmat.2018.08.089
  • Youssef, N., Lafhaj, Z., and Chapiseau, C. (2020). Economic Analysis of Geopolymer Brick Manufacturing: A French Case Study. Sustainability, 12(18), 7403. DOI: https://doi.org/10.3390/su12187403
  • Zainal, F. F., Sulotoha, N., Daud, Y. M., Hashim, M. F. A., Hasri, and Hartati. (2020). The effect of sodium hydroxide (NaOH) solution concentration on properties of geopolymer paste. IOP conference series, 957(1), 012058. DOI: https://doi.org/10.1088/1757-899x/957/1/012058