Vol. 23, No. 3 (2024), Sim24267 https://doi.org/10.24275/rmiq/Sim24267


Numerical and experimental study of a fluidic oscillator


 

Authors

R. Gonzalez-Mora, S. A. Arreola-Villa, B. Figueroa-Espinoza, S.R. Galvan-Gonzalez, A. Aguilar-Corona


Abstract

Fluidics is a discipline that uses physics of fluids to produce output signals similar to those used in electronics, such as logical operations or oscillations for a wide variety of applications. Most devices have no moving parts and are relatively easy to produce. This investigation uses 3D Direct Numerical Simulations (DNS) and an experimental prototype to characterize a fluidic oscillator. The geometrical design (man-shaped) causes a self-sustained switching between two outlets. Two important vortices were identified, related to the output selection: one small vortex near one of the control ports (Coanda effect), responsible for the switching, and a larger one on the mixing zone (belly), facilitating the flow towards the opposite side. The oscillation frequency for the experimental prototype was determined by the application of a Fast Fourier transform of the output signal, captured with a microphone. The onset of the oscillations, as well as the frequencies in terms of the Strouhal (Sr) and Reynolds (Re) numbers were obtained. The Sr is a monotonically increasing function Re, up to a transition Reynolds number (maximum) where Sr starts decreasing with Re (at quasi-constant frequency). The numerical simulation results were in agreement with the experiments, and allowed for the visualization of the mechanisms responsible for the switching. These results suggest that numerical techniques can be used for design purposes in fluidics.


Keywords

Fluidic Oscillator, Coanda Effect, DNS, Fluidics.


References

  • Bobusch, B. C., Woszidlo, R., Bergada, J. M., Nayeri, C. N., & Paschereit, C. O. (2013). Experimental study of the internal flow structures inside a fluidic oscillator. Experiments in fluids, 54, 1-12. doi:10.1007/s00348-013-1559-6
  • Campagnuolo, C. J., & Lee, H. C. (1969). Review of some fluid oscillators (p. 0044). US Army Material Command, Harry Diamond Laboratories. https://apps.dtic.mil/sti/tr/pdf/AD0689445.pdf
  • Cerretelli, C., & Kirtley, K. (2009). Boundary layer separation control with fluidic oscillators. doi:10.1115/1.3066242
  • Devatine, A., & Mietton-Peuchot, M. (2009). A mathematical approach for oxygenation using micro bubbles: Application to the micro-oxygenation of wine. Chemical Engineering Science, 64(9), 1909-1917. doi:10.1016/j.ces.2009.01.012
  • Figueroa-Espinoza, B., & Legendre, D. (2010). Mass or heat transfer from spheroidal gas bubbles rising through a stationary liquid. Chemical Engineering Science, 65(23), 6296-6309. doi:10.1016/j.ces.2010.09.018
  • Ghanami, S., & Farhadi, M. (2019). Fluidic oscillators’ applications, structures and mechanisms–a review. Challenges in Nano and Micro Scale Science and Technology, 7(1), 9-27. doi: 10.22111/TPNMS.2018.25051.1153
  • Gregory, J., & Tomac, M. N. (2013). A review of fluidic oscillator development and application for flow control. In 43rd AIAA fluid dynamics conference (p. 2474). doi: 10.2514/6.2013-2474
  • Gokoglu, S., Kuczmarski, M., Culley, D., & Raghu, S. (2010, June). Numerical studies of a supersonic fluidic diverter actuator for flow control. In 5th Flow control conference (p. 4415). doi: 10.2514/6.2010-4415
  • Gregory, J., & Tomac, M. N. (2013). A review of fluidic oscillator development and application for flow control. In 43rd AIAA fluid dynamics conference (p. 2474). doi: 10.2514/6.2013-2474
  • Griffin, W. S. (1966). Design of a Fluid Jet Amplifier with Reduced Receiver: Interaction-region Coupling (Vol. 3651). National Aeronautics and Space Administration. https://ntrs.nasa.gov/api/citations/19660028389/downloads/19660028389.pdf
  • Jentzsch, M., Taubert, L., & Wygnanski, I. (2019). Using sweeping jets to trim and control a tailless aircraft model. AIAA Journal, 57(6), 2322-2334. doi: 10.2514/1.J056962
  • Jeong, H.-S., & Kim, K.-Y. (2017). Shape optimization of a feedback-channel fluidic oscillator. Engineering Applications of Computational Fluid Mechanics, 12(1), 169–181. doi: 10.1080/19942060.2017.1379441
  • Kim, G. H. (2011). A study of fluidic oscillators as an alternative pulsed vortex generating jet actuator for flow separation control (Doctoral dissertation, The University of Manchester (United Kingdom)). shorturl.at/dhlCM
  • Kim, S. H., Kim, H. D., & Kim, K. C. (2019). Measurement of two-dimensional heat transfer and flow characteristics of an impinging sweeping jet. International Journal of Heat and Mass Transfer, 136, 415-426. doi: 10.1016/j.ijheatmasstransfer.2019.03.021
  • Koklu, M. (2016). Effect of a Coanda extension on the performance of a sweeping-jet actuator. AIAA Journal, 54(3), 1131-1134. doi: 10.2514/1.J054448
  • Krüger, O., Bobusch, B. C., Woszidlo, R., & Paschereit, C. O. (2013). Numerical Modeling and Validation of the Flow in a Fluidic Oscillator. 21st AIAA Computational Fluid Dynamics Conference. doi: 10.2514/6.2013-3087
  • Lee S. Y., (1968) Fluid Control - Components and Systems, Technivision Services, Maidenhead, UK.
  • Löffler, S., Ebert, C., & Weiss, J. (2021). Fluidic-oscillator-based pulsed jet actuators for flow separation control. Fluids, 6(4), 166. doi: 10.3390/fluids6040166
  • López-Saucedo, F., Pecina-Treviño, E., la Garza-Rodríguez, D., Ramos-Méndez, K., Camacho-Ortegón, L., & Equihua-Guillén, F. (2016). Efecto de soluciones de KI, NaCl, MgCl2 y Na2SO4 en la distribución de tamaños de burbuja y surelación con la flotación de partículas de carbón y materia mineral. Revista mexicana de ingeniería química, 15(1), 221-229. http://rmiq.org/iqfvp/Pdfs/Vol.%2015,%20No.%201/Mat2/Mat2.html
  • Lubert, C. (2011). On some recent applications of the coanda effect. International Journal of Acoustics and Vibration, 16(3), 144. doi: 10.20855/ijav.2011.16.3286
  • Menter, F.R.; Kuntz, M.; Langtry, R. (2003). Ten years of industrial experience with the SST turbulence model. Turbul. Heat Mass Transf., 4, 625–632. shorturl.at/oyF67
  • Mohammadshahi, Shabnam & Samsam-Khayani, Hadi & Nematollahi, Omid & Kim, Kyung. (2019). Flow Characteristics of a Wall-Attaching Oscillating Jet over Single-wall and Double-Wall Geometries. Experimental Thermal and Fluid Science. 112. 110009. doi: 10.1016/j.expthermflusci.2019.110009
  • Moukalled, F., Mangani, L., & Darwish, M. (2016). The finite volume method in computational fluid dynamics, Fluid Mechanics and its Applications. Cham: Springer, 113. doi:10.1007/978-3-319-16874-6
  • Patankar S.V., Spalding D.B. (1972) A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transf 15(10):1787–1806.
  • Patankar, S. V. (1980). Numerical heat transfer and fluid flow, Hemisphere Publ. Corp., New York, 58, 288.
  • Quijano, G., Franco-Morgado, M., Córdova-Aguilar, M. S., Galindo, E., & Thalasso, F. (2020). Oxygen transfer in a three-phase bubble column using solid polymers as mass transfer vectors. Revista Mexicana de Ingeniería Química, 19(Sup. 1), 483-494. doi: 10.24275/rmiq/Proc1486
  • Rehman, F., Medley, G. J., Bandulasena, H., & Zimmerman, W. B. (2015). Fluidic oscillator-mediated microbubble generation to provide cost effective mass transfer and mixing efficiency to the wastewater treatment plants. Environmental research, 137, 32-39. doi: 10.1016/j.envres.2014.11.017
  • Schmidt, H. J., Woszidlo, R., Nayeri, C. N., & Paschereit, C. O. (2017). Separation control with fluidic oscillators in water. Experiments in Fluids, 58, 1-17. doi: 10.1007/s00348-017-2392-0
  • Tajik, A. R., Kara, K., & Parezanović, V. (2021). Sensitivity of a fluidic oscillator to modifications of feedback channel and mixing chamber geometry. Experiments in Fluids, 62, 1-19. doi: 10.1007/s00348-021-03342-0
  • Tomac, M. N., & Gregory, J. W. (2014). Internal jet interactions in a fluidic oscillator at low flow rate. Experiments in Fluids, 55, 1-14. doi: 10.1007/s00348-014-1730-8
  • Tomac, M. N. (2020). Novel impinging jets-based non-periodic sweeping jets. Journal of Visualization, 23, 369-372. doi: 10.1007/s12650-020-00633-2
  • Whalen, E. A., Shmilovich, A., Spoor, M., Tran, J., Vijgen, P., Lin, J. C., & Andino, M. (2018). Flight test of an active flow control enhanced vertical tail. AIAA Journal, 56(9), 3393-3398. doi: 10.2514/1.J056959
  • Wen, X., Li, Z., Zhou, L., Yu, C., Muhammad, Z., Liu, Y., ... & Liu, Y. (2020). Flow dynamics of a fluidic oscillator with internal geometry variations. Physics of Fluids, 32(7). doi: 10.1063/5.0012471
  • Woszidlo, R., Nawroth, H., Raghu, S., & Wygnanski, I. (2010, June). Parametric study of sweeping jet actuators for separation control. In 5th flow control conference (p. 4247). doi: 10.2514/6.2010-4247
  • Zimmerman, W.B, Tesar, V., Butler, S., & Bandulasena, H. (2008). Microbubble Generation. Recent Patents on Engineering, 2(1), 1–8. doi: 10.2174/187221208783478598
  • Zimmerman, W.B., Tesař, V., & Bandulasena, H. H. (2009). Efficiency of an aerator driven by fluidic oscillation. Part 1: Laboratory bench scale studies. Sheffield University. shorturl.at/lANR8