Revista Mexicana de Ingeniería Química, Vol. 22, No. 3 (2023), Bio2366

A singular value decomposition approach for the derivation of the Michaelis-Menten equation

J.A. Ochoa-Tapia, E.J. Vernon-Carter, J. Alvarez-Ramirez



The Michaelis-Menten (MM) equation is traditionally derived by taking a quasi-steady state assumption (QSSA) for the intermediate complex or a chemical equilibrium assumption for the transformation of substrate into the intermediate complex. The validity of these assumptions has been subjected to intense research in recent decades, where the use of tools from singularly perturbed systems has played a central role. The present work aims to explore an approach to derive the MM equation from a singular value decomposition (SVD) analysis of the MM kinetics. The idea is to consider singular values as scaling factors to convert the MM equations into a singularly perturbed system. The results showed that the MM equation can be obtained from the boundary-layer system for a sufficient separation of the time scale represented by singular values. Such a boundary-layer system can be interpreted as resulting from a linear combination of the traditional complex QSSA and substrate equilibrium assumption (SEA). The SVD methodology combined with results from singularly perturbed systems can be used for extended MM kinetics. To this end, the case of the autocatalytic MM kinetics was considered as a worked example. Numerical examples were used to illustrate the theoretical findings.

Keywords: Michaelis-Menten; multiscale; singular values.



  • Albe, K. R., Butler, M. H., and Wright, B. E. (1990). Cellular concentrations of enzymes and their substrates. Journal of Theoretical Biology 143, 163-195.
  • Borghans, J. M., De Boer, R. J., and Segel, L. A. (1996). Extending the quasi-steady state approximation by changing variables. Bulletin of Mathematical Biology 58, 43-63.
  • Briggs, G. E., and Haldane, J. B. S. (1925). A note on the kinetics of enzyme action. Biochemical Journal 19, 338.
  • Bishop, L. M., and Qian, H. (2010). Stochastic bistability and bifurcation in a mesoscopic signaling system with autocatalytic kinase. Biophysical Journal98(1), 1-11.
  • Burke, M. A., Maini, P. K., and Murray, J. D. (1990). On the kinetics of suicide substrates. Biophysical Chemistry 37, 81-90. 10.1042/bj1850771
  • Calder, M. S., and Siegel, D. (2008). Properties of the Michaelis–Menten mechanism in phase space. Journal of Mathematical Analysis and Applications339(2), 1044-1064.
  • Eilertsen, J., Stroberg, W., and Schnell, S. (2018a). A theory of reactant-stationary kinetics for a mechanism of zymogen activation. Biophysical Chemistry 242, 34-44.
  • Eilertsen, J., Stroberg, W., and Schnell, S. (2018b). Phase-plane geometries in coupled enzyme assays. Mathematical Biosciences 306, 126-135.
  • Eilertsen, J., Roussel, M. R., Schnell, S., and Walcher, S. (2021). On the quasi-steady-state approximation in an open Michaelis–Menten reaction mechanism. AIMS Mathematics 6, 6781.
  • Eilertsen, J., and Schnell, S. (2020). The quasi-steady-state approximations revisited: Timescales, small parameters, singularities, and normal forms in enzyme kinetics. Mathematical Biosciences 325, 108339.
  • Fraser, S. J. (1988). The steady state and equilibrium approximations: A geometrical picture. The Journal of Chemical Physics88(8), 4732-4738.
  • Heineken, F. G., Tsuchiya, H. M., and Aris, R. (1967). On the mathematical status of the pseudo-steady state hypothesis of biochemical kinetics. Mathematical Biosciences 1, 95-113.
  • Hoppensteadt, F. (1974). Asymptotic stability in singular perturbation problems. II: Problems having matched asymptotic expansion solutions. Journal of Differential Equations 15, 510-521.
  • Laidler, K. J. (1955). Theory of the transient phase in kinetics, with special reference to enzyme systems. Canadian Journal of Chemistry33(10), 1614-1624.
  • Meraz, M., Sanchez-Vazquez, V., Martinez-Martinez, F. (2022) A systematic derivation of the Monod equation for multi-substrate conditions. Revista Mexicana de Ingeniería Química 21, Bio2798.
  • Michaelis, L., and Menten, M. L. (1913). Die kinetik der invertinwirkung. Biochemische Zeitschrift 49(333-369), 352.
  • Murugan, R. (2018). Theory on the rate equation of Michaelis–Menten type single-substrate enzyme catalyzed reactions. Journal of Mathematical Chemistry 56, 508-556.
  • Patsatzis, D. G., and Goussis, D. A. (2019). A new Michaelis-Menten equation valid everywhere multi-scale dynamics prevails. Mathematical Biosciences 315, 108220.
  • Patsatzis, D. G., and Goussis, D. A. (2023). Algorithmic criteria for the validity of quasi-steady state and partial equilibrium models: the Michaelis–Menten reaction mechanism. Journal of Mathematical Biology87, 1-43.
  • Rao, S., and Heynderickx, P. M. (2021). Conditions for the validity of Michaelis-Menten approximation of some complex enzyme kinetic mechanisms. Biochemical Engineering Journal 171, 108007.
  • Reich, J. G., and Sel'Kov, E. E. (1974). Mathematical analysis of metabolic networks. FEBS Letters 40(S1), S112-S118. 
  • Schauer, M., and Heinrich, R. (1979). Analysis of the quasi-steady-state approximation for an enzymatic one-substrate reaction. Journal of Theoretical Biology 79, 425-442.
  • Schnell, S. (2014). Validity of the Michaelis–Menten equation–steady‐state or reactant stationary assumption: that is the question. The FEBS Journal 281, 464-472.
  • Segel, L. A. (1988). On the validity of the steady state assumption of enzyme kinetics. Bulletin of Mathematical Biology 50, 579-593.
  • Segel, L. A., and Slemrod, M. (1989). The quasi-steady-state assumption: a case study in perturbation. SIAM Review31(3), 446-477.
  • Tzafriri, A. R., and Edelman, E. R. (2007). Quasi-steady-state kinetics at enzyme and substrate concentrations in excess of the Michaelis–Menten constant. Journal of Theoretical Biology 245, 737-748.
  • Yun, K. I., and Han, T. S. (2020). Relationship between enzyme concentration and Michaelis constant in enzyme assays. Biochimie176, 12-20.
  • Zagaris, A., Kaper, H. G., & Kaper, T. J. (2004). Fast and slow dynamics for the computational singular perturbation method. Multiscale Modeling & Simulation2(4), 613-638.