Revista Mexicana de Ingeniería Química, Vol. 22, No. 3 (2023), Fen23102


Fick's law: A derivation based on continuum mechanics

F.J. Valdés-Parada, B.D. Wood, S. Whitaker

https://doi.org/10.24275/rmiq/Fen23102


 

Abstract

In this study we derive Fick's law on the basis of the principles of chemical species mass and momentum conservation. The goal is to provide a simple derivation of this equation using a continuum mechanics approach. In addition, the associated assumptions and constraints that may limit its application are clearly identified. Our result is an analysis that derives Fick's law in liquid systems, and it is presented so that only a basic knowledge of continuum mechanics is needed to follow the derivation.

Keywords: Fick's law, dilute solution, diffusion velocity, continuum mechanics, multicomponent mixtures.

 


References

  • Adkins, J. (1963). Non-Linear Diffusion - Non-linear diffusion I. Diffusion and flow of mixtures of fluids. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 255(1064), 607-633. https://doi.org/10.1098/rsta.1963.0013
  • Adkins, J. E. (1964). Diffusion of fluids through aeolotropic highly elastic solids. Archive for Rational Mechanics and Analysis, 15(3), 222-234.                    https://doi.org/10.1007/ BF00275632
  • Atkin, R. J. and Craine, R. E. (1976). Continuum theories of mixtures: Basic theory and historical development. The Quarterly Journal of Mechanics and Applied Mathematics 29(2),209-244. https://doi.org/10.1093/qjmam/29.2.209
  • Bailey, J. E. and Ollis, D. F. (1986). Biochemical Engineering Fundamentals. McGraw Hill, second edition, 928 pp.
  • Batchelor, G. K. (1967). An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge, UK, 615 pp.
  • Bird, R. B. and Klingenberg, D. J. (2013). Multicomponent diffusion-a brief review. Advances in Water Resources 62, 238-242.
  • Bird, R. B., Stewart, W. E., and Lightfoot, E. N. (1960). Transport Phenomena, first edition. John Wiley & Sons, Inc., 808 pp.
  • Bird, R. B., Stewart, W. E., and Lightfoot, E. N. (2006). Transport Phenomena, Revised 2nd Edition. John Wiley & Sons, Inc., 905 pp.
  • Birkhoff, G. (1960). Hydrodynamics: A Study in Logic, Fact and Similitude. Princeton University Press, 202 pp.
  • Borja-Málaga, M., Jiménez-Ochoa, A., de Miranda,
  • E. M., and Escobedo-Vargas, F. A. (2022). Effect of drying on the extraction yield of luma chequen (molina) a. gray essential oil. Revista Mexicana de Ingeniería Química 21(2), Proc2623. https://doi.org/10.24275/ rmiq/Proc2623
  • Bowen, R. (1967). Toward a thermodynamics and mechanics of mixtures. Archive for Rational Mechanics and Analysis 24, 370-403. https://doi.org/10.1007/BF00253154
  • Curtiss, C. F. and Bird, R. B. (1999). Multicomponent diffusion. Industrial & Engineering Chemistry Research 38(7), 2515-2522. https://doi.org/10.1021/ ie9901123
  • Cussler, E. L. (2009). Diffusion, third edition.Cambridge University Press, 655 pp.
  • Datta, R. and Vilekar, S. A. (2010). The continuum mechanical theory of multicomponent diffusion in fluid mixtures. Chemical Engineering Science 65(22), 5976-5989. https://doi. org/10.1016/j.ces.2010.08.022
  • Deen, W. M. (2012). Analysis of Transport Phenomena. Topics in Chemical Engineering. Oxford University Press, New York, 2nd edition, 688 pp.
  • DeGroot, S. R. and Mazur, P. (1967). Non- Equilibrium Thermodynamics. North-Holland, Amsterdam, 510 pp.
  • del Río, J. A. and Whitaker, S. (2016). Diffusion of charged species in liquids. Scientific Reports 6(1), 35211. https://doi.org/10.1038/ srep35211
  • Einstein, A. (1905). Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Annalen der Physik 322, 549-560. https://doi.org/ 10.1002/andp.19053220806
  • Fick, A. (1855). Ueber diffusion. Annalen der Physik und Chemie 170(1), 59-86. https://doi. org/10.1002/andp.18551700105
  • Gibbs, J. W. (1906a). Scientific Papers of J. Willard Gibbs, in Two Volumes, Vol. I, Longmans, Green & Co., New York, 434 pp.
  • Gibbs, J. W. (1906b). Elements of vector analysis. Chapter III in Scientific Papers of J. Willard Gibbs, in Two Volumes, Vol. II, Longmans, Green & Co., New York, 284 pp.
  • Graham, T. (1829). A short account of experimental researches on the diffusion of gases rough each other, and their separation by mechanical means. Quarterly Journal of Science, Literature, and Art 2, 74-83.
  • Graham, T. (1850). I. The Bakerian lecture.-on the diffusion of liquids. Philosophical Transactions of the Royal Society of London 140,1-46. https://doi.org/10.1098/rstl.1850.0001
  • Graham, T. (1863). On the molecular mobility of gases. Philosophical Transactions of the Royal Society of London 153, 385-405. https:// doi.org/10.1098/rstl.1863.0017
  • Green, A. E. and Adkins, J. E. (1964). A contribution to the theory of non-linear diffusion. Archive for Rational Mechanics and Analysis 15(3), 235-246. https://doi.org/ 10.1007/BF00275633
  • Guggenheim, E. A. (1933). ModernThermodynamics by the Methods of Willard Gibbs, Methuen & Co. Ltd., London, 206 pp.
  • Guggenheim, E. A. (1949). Thermodynamics. An advanced treatment for Chemists and Physicists. Monographs on Theoretical and Applied Physics, Vol. II, H.B.G. Casimir and H. Brinkman, eds. North-Holland Publishing Co., Amsterdam, 395 pp.
  • Hildebrand, J. H. (1936). Solubility of Non- electrolytes. Reinhold Pub., New York, 203 pp.
  • Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B. (1964). The Molecular Theory of Gases and Liquids. Wiley-Interscience, 1280 pp.
  • Jaramillo-Gutiérrez, M., Pedraza-Avella, J., González,  I.,  Rivero,  E.,  and  Cruz-Díaz, M. (2022). Design equations based on micro/macromixing theoretical analysis of rtd curves for a tubular concentric electrochemical reactor with expanded meshes as electrodes. Revista Mexicana de Ingeniería Química 21(1), Cat2434. http://dx.doi.org/10.24275/rmiq/Cat2434
  • Kerkhof, P. and Geboers, M. (2005). Toward a unified theory of isotropic molecular transport phenomena. AIChE Journal 51(1), 79-121. https://doi.org/10.1002/aic.10309
  • Krishna, R. (2019). Diffusing uphill with James Clerk Maxwell and Josef Stefan. Chemical Engineering Science 195, 851-880. https:// doi.org/10.1016/j.ces.2018.10.032
  • Krishna, R. and Wesselingh, J. (1997). The Maxwell- Stefan approach to mass transfer. Chemical Engineering Science 52(6), 861-911. https:// doi.org/10.1016/S0009-2509(96)00458-7
  • Levenspiel, O. (1998). Chemical Reaction Engineering, third edition. John Wiley & Sons, 688 pp.
  • Liu, I.-S. and Müller, I. (1984). Appendix 5b. thermodynamics of mixtures of fluids. In Truesdell, C., editor, Rational Thermodynamics, Second Edition, pages 264-285. Springer- Verlag, New York. https://doi.org/10. 1007/978-1-4612-5206-1_14
  • Loschmidt, J. (1870). Sitzungsber. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Mathematisch- Naturwissenschaftliche Classe 62, 468.
  • Lowney, J. and Larrabee, R. (1980). The use of Fick’s law in modeling diffusion processes. IEEE Transactions on Electron Devices 27, 1795-1798. https://doi.org/10.1109/T- ED.1980.20105
  • Maxwell, J. (1873). On Loschmidt’s experiments on diffusion in relation to the kinetic theory of gases. Nature 8, 298-300. https://doi.org/ 10.1038/008298a0
  • Mills, N. (1966). Incompressible mixtures of Newtonian fluids. International Journal of Engineering Science 4, 97-112. https://doi. org/10.1016/0020-7225(66)90018-8
  • Onsager, L. (1945). Theories and problems of liquid diffusion. Annals of the New York Academy of Sciences, 46(5 The Diffusion), 241-265. https://doi.org/10.1111/j.1749-6632. 1945.tb36170.x
  • Patzek, T. W. (2014a). Fick’s diffusion experiments revisited-part I. Advances in Historical Studies 03(04), 194-206. http://dx.doi.org/10. 4236/ahs.2014.34017
  • Patzek, T. W. (2014b). Fick’s diffusion experiments revisited-part II (English Translation of Fick’s orginal thinking). Advances in Historical Studies 03(04), 207-220. http://dx.doi. org/10.4236/ahs.2014.34018
  • Peka˘r, M. and Samohy`l , I. (2014). The Thermodynamics of Linear Fluids and Fluid Mixtures. Springer, Cham, Switzerland, 308 pp.
  • Perrin, J. (1913). Les Atoms. Paris: Félix Alcan, 240 pp.
  • Pitzer, K. S. (1995). Thermodynamics. McGraw-Hill, Inc., New York, 626 pp.
  • Prigogine, I. (1967). Thermodynamics of Irreversible Processes. Interscience Publishers (Wiley), New York, third edition, 147 pp.
  • Rosner, D. E. (2000). Transport Processes in Chemically Reacting Flow Systems. Dover Publications, 1043 pp.
  • Slattery, J. C. (1999). Advanced Transport Phenomena (Cambridge Series in Chemical Engineering). Cambridge University Press, 734 pp.
  • Stefan, J. (1871). Über das gleichgewicht und die bewegung, insbesondere die diffusion von gasgemengen. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften Wien, 2te Abteilung 63, 63-124.
  • Stokes, G. G. (1851). On the effect of the internal friction of fluids on the motion of pendulums. Transactions of the Cambridge Philosophical Society 9, 8-106.
  • Truesdell, C. (1962). Mechanical basis of diffusion. The Journal of Chemical Physics 37(10), 2336-2344.  https://doi.org/10.1063/1.1733007
  • Truesdell, C. (1984). Rational Thermodynamics, second Edition. Springer-Verlag, New York, 578 pp. https://doi.org/10.1007/978-1-4612-5206-1
  • Truesdell, C. and Toupin, R. (1960). The classical field theories. In Principles of Classical Mechanics and Field Theory / Prinzipien Der Klassischen Mechanik Und Feldtheorie, pages 226-858. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-45943-6_2
  • Whitaker, S. (1986). Transport processes with heterogeneous reaction. In Whitaker, S. and Cassano, A., editors, Concepts and Design of Chemical Reactors, chapter 1, pages 1-94. Gordon and Breach.
  • Whitaker, S. (1988). Levels of simplification: The use of assumptions, restrictions and constraints in engineering analysis. Chemical Engineering Education 22, 104-108.
  • Whitaker, S. (2009a). Chemical engineering education: Making connections at interfaces. Revista Mexicana de Ingeniería Química 8(1), 1-33. https://rmiq.org/iqfvp/Pdfs/Vol% 208%20no%201/RMIQ_Vol_8_No_1_1.pdf
  • Whitaker, S. (2009b). Derivation and application of the Stefan-Maxwell equations. Revista Mexicana de Ingeniería Química 18(3), 213-243.            https://rmiq.org/iqfvp/Pdfs/Vol% 208%20no%203/2009paper.pdf
  • Whitaker, S. (2012). Mechanics and thermodynamics of diffusion. Chemical Engineering Science 68(1), 362-375. https://doi.org/10.1016/ j.ces.2011.09.050.