Revista Mexicana de Ingeniería Química, Vol. 22, No. 3 (2023), IA2367

Biosynthesis of gold nanoparticles using the aqueous extract of Hippocratea excelsa root bark. Antioxidant and photocatalytic evaluation

C. Nuñez-Delgado, A. Luna-Flores, L.A. Conde-Hernández, E. Flores-Aquino, A. Romero-López, N. Tepale



In this study the biosynthesis of gold nanoparticles (AuNPs) using the aqueous extract of the root bark of Hippocratea excelsa (HE) is reported. AuNPs were synthesized by adding different volumes of HE extract, ranging from 0.2-1 mL, and utilizing the gold precursor at 0.25 and 1 mM. All reactions were synthesized at room temperature. The AuNPs were characterized by UV-vis, TEM, DLS, Z-potential, and XRD. Extract and AuNPs antioxidant capacity was obtained by ABTS and DPPH methods. The photocatalytic activity was tested with methylene blue (MB) dye degradation. The UV-vis spectra showed a band associated with the gold surface plasmon resonance (SPR) at around 535 nm, evidencing the presence of nanoparticles. The hydrodynamic diameter suggests that the biomolecules of the extract attach to the nanoparticles, while the Z-potential reveals a stable colloidal solution. Micrographs demonstrated predominantly spherical AuNPs with a size of approximately 25 nm. XRD analysis confirmed the face cubic center (fcc) structure of the nanoparticles. On the other hand, the extract exhibited better antioxidant properties than the AuNPs. Finally, the photocatalytic experiments reveal an MB dye degradation of up to 89%. These results show that AuNPs produced by ecological and simple methods could be used in different applications.

Keywords: biosynthesis, nanoparticles, Hippocratea excelsa, antioxidant, photocatalysis.



  • Aguilar-Pliego, J., Nuñez, R. Z., Agundez, J., De la Serna Valdés, R. and Pérez-Pariente, J. (2021). Biosynthesis of gold clusters and nanoparticles by using extracts of Mexican plants and evaluation of their catalytic activity in oxidation reactions. Catalysis Letters 151, 1604–1611.
  • Aji, A., Oktafiani, D., Yuniarto, A. and Amin, A. K. (2022). Biosynthesis of gold nanoparticles using Kapok (Ceiba pentandra) leaf aqueous extract and investigating their antioxidant activity. Journal of Molecular Structure 1270, 133906.
  • Alanís, A. D., Calzada, F., Cervantes, J. A., Torres, J. and Ceballos, G. M. (2005). Antibacterial properties of some plants used in Mexican traditional medicine for the treatment of gastrointestinal disorders. Journal of Ethnopharmacology 100, 153–157.
  • Al-Radadi, N. S. (2021). Facile one-step green synthesis of gold nanoparticles (AuNp) using licorice root extract: Antimicrobial and anticancer study against HepG2 cell line. Arabian Journal of Chemistry 14, 102956.
  • Apaza Ticona, L., Slowing, K., Serban, A. M., Humanes Bastante, M. and Hernáiz, M. J. (2022). Wound healing, anti-inflammatory and anti-melanogenic activities of ursane-type triterpenes from Semialarium mexicanum (Miers) Mennega. Journal of Ethnopharmacology 289, 115009.
  • Baruah, D., Goswami, M., Yadav, R. N. S., Yadav, A. and Das, A. M. (2018). Biogenic synthesis of gold nanoparticles and their application in photocatalytic degradation of toxic dyes. Journal of Photochemistry and Photobiology B: Biology 186, 51–58.
  • Boruah, J. S., Devi, C., Hazarika, U., Bhaskar Reddy, P. V., Chowdhury, D., Barthakur, M. and Kalita, P. (2021). Green synthesis of gold nanoparticles using an antiepileptic plant extract:in vitrobiological and photo-catalytic activities. RSC Advances 11, 28029–28041.
  • Cáceres-Castillo, D., Mena-Rejón, G. J., Cedillo-Rivera, R. and Quijano, L. (2008). 21β-Hydroxy-oleanane-type triterpenes from Hippocratea excelsa. Phytochemistry 69, 1057–1064.
  • Calzada, F. and Mata, R. (1995). Hippocrateine III, a sesquiterpene alkaloid from Hippocratea excelsa. Phytochemistry 40, 583-585.
  • Chahardoli, A., Karimi, N., Sadeghi, F. and Fattahi, A. (2018). Green approach for synthesis of gold nanoparticles from Nigella arvensis leaf extract and evaluation of their antibacterial, antioxidant, cytotoxicity and catalytic activities. Artificial Cells, Nanomedicine and Biotechnology 46, 579–588.
  • Chen, M. N., Chan, C. F., Huang, S. L. and Lin, Y. S. (2019). Green biosynthesis of gold nanoparticles using Chenopodium formosanum shell extract and analysis of the particles’ antibacterial properties. Journal of the Science of Food and Agriculture 99, 3693–3702.
  • Conde-Hernández, L. A. and Guerrero-Beltrán, J. Á. (2014). Total phenolics and antioxidant activity of Piper auritum and Porophyllum ruderale. Food Chemistry 142, 455–460.
  • Cordero-García, M. X., Rojas-García, E., Salinas-Rodríguez, E. and Gómez, S. A. (2023). Influence on pretreatment in CeO2 and Au/CeO2 nanocomposite to improve the creation of surface defects enabling modification in optical interband. Revista Mexicana de Ingeniería Química 22.
  • Doan, V. D., Thieu, A. T., Nguyen, T. D., Nguyen, V. C., Cao, X. T., Nguyen, T. L. H. and Le, V. T. (2020). Biosynthesis of gold nanoparticles using Litsea cubeba fruit extract for catalytic reduction of 4-Nitrophenol. Journal of Nanomaterials 2020, 4548790.
  • Du, J., Wu, S., Hu, Z., Yu, Z., Zhao, D. and Bai, Y. (2020). Green synthesis of salt-tolerant gold nanoparticles for the rapid qualitative detection of Listeria monocytogenes in lateral flow immunoassay. Journal of Materials Science 55, 15426–15438.
  • El-Borady, O. M., Ayat, M. S., Shabrawy, M. A. and Millet, P. (2020). Green synthesis of gold nanoparticles using Parsley leaves extract and their applications as an alternative catalytic, antioxidant, anticancer, and antibacterial agents. Advanced Powder Technology 31, 4390–4400.
  • Escobedo Hinojosa, W. I., Acevedo Quiróz, M., Romero Álvarez, I., Escobar Castañeda, P., Villarreal, M. L. and Taketa, A. C. (2014). Anti-Helicobacter pylori, gastroprotective, anti-inflammatory, and cytotoxic activities of methanolic extracts of five different populations of Hippocratea celastroides collected in Mexico. Journal of Ethnopharmacology 155, 1156–1163.
  • Fan, J., Cheng, Y. and Sun, M. (2020). Functionalized gold nanoparticles: synthesis, properties and biomedical applications. The Chemical Record 20, 1474–1504.
  • Furukawa, M., Furukawa, M., Makino, M., Uchiyama, T., Fujimoto, Y. and Matsuzaki, K. (2018). New sesquiterpene pyridine alkaloids from Hippocratea excelsa. Natural Product Communications 13, 957–960.
  • Furukawa, M., Makino, M., Uchiyama, T., Ishimi, K., Ichinohe, Y. and Fujimoto, Y. (2002). Sesquiterpene pyridine alkaloids from Hippocratea excelsa. Phytochemistry 59, 767-777.
  • Irfan, M., Ahmad, T., Moniruzzaman, M. M., Abdullah, B. B. and Bhattacharjee, S. (2016). Ionic liquid mediated biosynthesis of gold nanoparticles using Elaeis guineensis (oil palm) leaves extract. Procedia Engineering 148, 568–572.
  • Kamran, U., Bhatti, H. N., Iqbal, M. and Nazir, A. (2019). Green synthesis of metal nanoparticles and their applications in different fields: A review. Zeitschrift fur Physikalische Chemie 233, 1325-1349.
  • Keijok, W. J., Pereira, R. H. A., Alvarez, L. A. C., Prado, A. R., da Silva, A. R., Ribeiro, J., de Oliveira, J. P. and Guimarães, M. C. C. (2019). Controlled biosynthesis of gold nanoparticles with Coffea arabica using factorial design. Scientific Reports 9, 16019.
  • Khatua, A., Prasad, A., Priyadarshini, E., Patel, A. K., Naik, A., Saravanan, M., Barabadi, H., Ghosh, llora, Paul, B., Paulraj, R. and Meena, R. (2020). Emerging antineoplastic plant-based gold nanoparticle synthesis: a mechanistic exploration of their anticancer activity toward cervical cancer cells. Journal of Cluster Science 31, 1329–1340.
  • Khlebtsov, B. N. and Khlebtsov, N. G. (2011). On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Colloid Journal 73, 118–127.
  • Kumar, B., Smita, K., Cumbal, L. and Debut, A. (2016). One pot synthesis and characterization of gold nanocatalyst using Sacha inchi (Plukenetia volubilis) oil: Green approach. Journal of Photochemistry and Photobiology B: Biology 158, 55–60.
  • Kumari, P. and Meena, A. (2020). Green synthesis of gold nanoparticles from Lawsoniainermis and its catalytic activities following the Langmuir-Hinshelwood mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects 606, 125447.
  • Kuppusamy, P., Yusoff, M. M., Parine, N. R. and Govindan, N. (2015). Evaluation of in-vitro antioxidant and antibacterial properties of Commelina nudiflora L. extracts prepared by different polar solvents. Saudi Journal of Biological Sciences 22, 293–301.
  • Kurhade, P., Kodape, S. and Choudhury, R. (2021). Overview on green synthesis of metallic nanoparticles. Chemical Papers 75, 5187–5222.
  • Mariychuk, R., Grulova, D., Grishchenko, L. M., Linnik, R. P. and Lisnyak, V. V. (2020). Green synthesis of non-spherical gold nanoparticles using Solidago canadensis L. extract. Applied Nanoscience 10, 4817–4826.
  • Mata, R., Calzada, F., Díaz, E. and Toscano, R. A. (1990). Chemical studies on Mexican plants used in traditional medicine, XV. Sesquiterpene evoninoate alkaloids from Hippocratea excelsa. Journal of Natural Products 53, 1212–1219.
  • Mena-Rejón, G. J., Pérez-Espadas, A. R., Moo-Puc, R. E., Cedillo-Rivera, R., Bazzocchi, I. L., Jiménez-Diaz, I. A. and Quijano, L. (2007). Antigiardial activity of triterpenoids from root bark of Hippocratea excelsa. Journal of Natural Products 70, 863–865.
  • Munteanu, I. G. and Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences 22, 3380.
  • Mzwd, E., Ahmed, N. M., Suradi, N., Alsaee, S. K., Altowyan, A. S., Almessiere, M. A. and Omar, A. F. (2022). Green synthesis of gold nanoparticles in Gum Arabic using pulsed laser ablation for CT imaging. Scientific Reports 12, 10549.
  • Nakkala, J. R., Bhagat, E., Suchiang, K. and Sadras, S. R. (2015). Comparative study of antioxidant and catalytic activity of silver and gold nanoparticles synthesized from costus pictus leaf extract. Journal of Materials Science and Technology 31, 986–994.
  • Nakkala, J. R., Mata, R. and Sadras, S. R. (2016). The antioxidant and catalytic activities of green synthesized gold nanoparticles from Piper longum fruit extract. Process Safety and Environmental Protection, 100, 288–294.
  • Navarrete, A., Luis Trejo-Miranda, J. and Reyes-Trejo, L. (2002). Principles of root bark of Hippocratea excelsa (Hippocrataceae) with gastroprotective activity. Journal of Ethnopharmacology 79, 383-388.
  • Osonga, F. J., Eshun, G. B. and Sadik, O. A. (2022). Ligand effect on controlling the synthesis of branched gold nanomaterials against fusarium wilt diseases. RSC Advances 12, 31855–31868.
  • Parial, D., & Pal, R. (2015). Biosynthesis of monodisperse gold nanoparticles by green alga Rhizoclonium and associated biochemical changes. Journal of Applied Phycology 27, 975–984.
  • Paul, B., Bhuyan, B., Dhar Purkayastha, D., Dey, M. and Dhar, S. S. (2015). Green synthesis of gold nanoparticles using Pogestemon benghalensis (B) O. Ktz. leaf extract and studies of their photocatalytic activity in degradation of methylene blue. Materials Letters 148, 37–40.
  • Paul, B., Bhuyan, B., Purkayastha, D. D. and Dhar, S. S. (2016). Photocatalytic and antibacterial activities of gold and silver nanoparticles synthesized using biomass of Parkia roxburghii leaf. Journal of Photochemistry and Photobiology B: Biology 154, 1–7.
  • Perez, R. M., Perez, S., Zavala, M. A. and Salazar, M. (1995). Anti-inflammatory activity of the bark of Hippocratea excelsa. Journal of Ethnopharmacology 47, 85-90.
  • Reyes-Chilpa, R., Jiménez-Estrada, M., Cristóbal-Telésforo, E., Torres-Colín, L., Villavicencio, M. A., Pérez-Escandón, B. E. and Mercado-González, R. (2003). Natural Insecticides from Hippocratea excelsa and Hippocratea celastroides. Economic Botany 57, 54–64.
  • Rey-Méndez, R., Rodríguez-Argüelles, M. C. and González-Ballesteros, N. (2022). Flower, stem, and leaf extracts from Hypericum perforatum L. to synthesize gold nanoparticles: Effectiveness and antioxidant activity. Surfaces and Interfaces 32, 102181.
  • Seku, K., Gangapuram, B. R., Pejjai, B., Hussain, M., Hussaini, S. S., Golla, N. and Kadimpati, K. K. (2019). Eco-friendly synthesis of gold nanoparticles using carboxymethylated gum Cochlospermum gossypium (CMGK) and their catalytic and antibacterial applications. Chemical Papers 73, 1695–1704.
  • Serrano-Niño, J. C., Contreras-Martínez, C. A., Pacheco, J. R. S., Ojeda, A. Z., Uscanga, B. R. A. and Cavazos-Garduño, A. (2020). Optimization of the biosynthesis of gold nanoparticles using Hypericum perforatum and evaluation of their antimicrobial activity. Revista Mexicana de Ingeniería Química 19, 889–902.
  • Singh, J., Dutta, T., Kim, K. H., Rawat, M., Samddar, P. and Kumar, P. (2018). “Green” synthesis of metals and their oxide nanoparticles: Applications for environmental remediation.  Journal of Nanobiotechnology 16, 84.
  • Singh, T., Jayaprakash, A., Alsuwaidi, M. and Madhavan, A. A. (2020). Green synthesized gold nanoparticles with enhanced photocatalytic activity. Materials Today: Proceedings 42, 1166–1169.
  • Velázquez, C., Calzada, F., Torres, J., González, F. and Ceballos, G. (2006). Antisecretory activity of plants used to treat gastrointestinal disorders in Mexico. Journal of Ethnopharmacology 103, 66–70.
  • Vo, Q. K., Nguyen, A. T., Ho, H. T., Huynh, L. T. N., Nguyen, T. P. P. and Nguyen, T. H. T. (2022). Environmentally friendly controlled synthesis of gold nanostars with collagen by one-step reduction method. Journal of Nanomaterials 2022, 4046389.
  • Ying, J., Zheng, Y., Zhang, H. and Fu, L. (2020). Room temperature biosynthesis of gold nanoparticles with Lycoris aurea leaf extract for the electrochemical determination of aspirin. Revista Mexicana de Ingeniería Química 19, 585–592.
  • Zayed, M. F., Mahfoze, R. A., El-kousy, S. M. and Al-Ashkar, E. A. (2020). In-vitro antioxidant and antimicrobial activities of metal nanoparticles biosynthesized using optimized Pimpinella anisum extract. Colloids and Surfaces A: Physicochemical and Engineering Aspects 585, 124167.