Revista Mexicana de Ingeniería Química, Vol. 22, No. 3 (2023), IA2385

Microwave-Assisted biodiesel synthesis employing ammonium-based ionic liquids as catalysts

M. Martínez-Sánchez, D. Guzmán-Lucero, R. Martínez-Palou



A fast, efficient, and green biodiesel synthesis methodology was developed using ammonium-based ionic liquids catalysts and microwave irradiation as a heating source. All ionic liquids (ILs) probed can act as catalysts, Brønsted acidic ILs containing the -SO3H group are the most efficient in terms of conversion. In these conditions, biodiesel can be synthesized at 50 °C and 25 minutes of microwave irradiation. According to the results, the new catalysts have great potential for use in environmentally friendly and highly efficient biodiesel synthesis processes.

Keywords: biodiesel, ionic liquids, microwave, catalysts, Brønsted acid.



  • Aldana-González, M. G., Gómez-Castro, F. I., Romero-Izquierdo, A. G., Conde-Mejía, C., Gutiérrez-Antonio, C., Morales-Rodríguez, R., & Universidad de Guanajuato. (2022). Supercritical biodiesel production: Feasibility of energy integration with a bioethanol production process. Revista Mexicana de Ingeniería Química, 21(1), 1-25.
  • Andreani, L., & Rocha, J. D. (2012). Use of ionic liquids in biodiesel production: A review. Brazilian Journal of Chemical Engineering, 29, 1-13.
  • Arai, S., Nakashima, K., Tanino, T., Ogino, C., Kondo, A., & Fukuda, H. (2010). Production of biodiesel fuel from soybean oil catalyzed by fungus whole-cell biocatalysts in ionic liquids. Enzyme and Microbial Technology, 46(1), 51-55.
  • Baskar, G., Anita, N. T., Jeehoon, H., & Naveenkumar, R. (2022). Ionic Liquid Co-Catalyst Assisted Biodiesel Production From Waste Cooking Oil Using Heterogeneous Nanocatalyst: Optimization and Characterization. Frontiers in Nanotechnology, 4.
  • Cheng, J., Mao, Y., Guo, H., Qian, L., Shao, Y., Yang, W., & Park, J.-Y. (2022). Synergistic and efficient catalysis over Brønsted acidic ionic liquid [BSO3HMIm][HSO4]–modified metal–organic framework (IRMOF-3) for microalgal biodiesel production. Fuel, 322, 124217.
  • Choedkiatsakul, I., Ngaosuwan, K., Assabumrungrat, S., Mantegna, S., & Cravotto, G. (2015). Biodiesel production in a novel continuous flow microwave reactor. Renewable Energy, 83, 25-29.
  • Ding, H., Ye, W., Wang, Y., Wang, X., Li, L., Liu, D., Gui, J., Song, C., & Ji, N. (2018). Process intensification of transesterification for biodiesel production from palm oil: Microwave irradiation on transesterification reaction catalyzed by acidic imidazolium ionic liquids. Energy, 144, 957-967.
  • Discover—Microwave Synthesizer. (2023).
  • Esquivel-Viveros, A., Ponce-Vargas, F., Esponda-Aguilar, P., Prado-Barragán, L. A., Gutiérrez-Rojas, M., Lye, G. J., & Huerta-Ochoa, S. (2009). Biodegradation of [bmim][PF6] using Fusarium sp. Revista Mexicana de Ingeniería Química, 8(2), 163-168.
  • Evangelista-Flores, A., Alcántar-González, F. S., Ramírez de Arellano Aburto, N., Cohen Barki, A., Robledo-Pérez, J. M., & Cruz-Gómez, M. J. (2014). Design of a continuous process of biodiesel production. Revista Mexicana de Ingeniería Química, 13(2), 483-491.
  • Gelbard, G., Brès, O., Vargas, R. M., Vielfaure, F., & Schuchardt, U. F. (1995). 1H nuclear magnetic resonance determination of the yield of the transesterification of rapeseed oil with methanol. Journal of the American Oil Chemists’ Society, 72(10), 1239-1241.
  • Groisman, Y., & Gedanken, A. (2008). Continuous Flow, Circulating Microwave System and Its Application in Nanoparticle Fabrication and Biodiesel Synthesis. The Journal of Physical Chemistry C, 112(24), 8802-8808.
  • Han, S., Yang, J., & Huang, H. (2022). Novel self-solidifying double-site acidic ionic liquid as efficient and reusable catalyst for green biodiesel synthesis. Fuel, 315, 122815.
  • Helwani, Z., Othman, M. R., Aziz, N., Fernando, W. J. N., & Kim, J. (2009). Technologies for production of biodiesel focusing on green catalytic techniques: A review. Fuel Processing Technology, 90(12), 1502-1514.
  • Hernando, J., Leton, P., Matia, M. P., Novella, J. L., & Alvarez-Builla, J. (2007). Biodiesel and FAME synthesis assisted by microwaves: Homogeneous batch and flow processes. Fuel, 86(10), 1641-1644.
  • Kappe, C. O., Stadler, A., & Dallinger, D. (2012). Microwaves in Organic and Medicinal Chemistry. John Wiley & Sons.
  • Khedri, B., Mostafaei, M., & Safieddin Ardebili, S. M. (2019). A review on microwave-assisted biodiesel production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(19), 2377-2395.
  • Kodgire, P., Sharma, A., & Kachhwaha, S. S. (2023). Optimization and kinetics of biodiesel production of Ricinus communis oil and used cottonseed cooking oil employing synchronised ‘ultrasound + microwave’ and heterogeneous CaO catalyst. Renewable Energy, 212, 320-332.
  • Lei, Z., Chen, B., Koo, Y.-M., & MacFarlane, D. R. (2017). Introduction: Ionic Liquids. Chemical Reviews, 117(10), 6633-6635.
  • Lima, A. C., Hachemane, K., Ribeiro, A. E., Queiroz, A., Gomes, M. C. S., & Brito, P. (2022). Evaluation and kinetic study of alkaline ionic liquid for biodiesel production through transesterification of sunflower oil. Fuel, 324, 124586.
  • Maciejewski, H. (2021). Ionic Liquids in Catalysis. Catalysts, 11(3), Article 3.
  • Martinez-Palou, R. (2006). Química en Microondas. CEM Publishing, Matthews, U.S.A.
  • Martínez-Palou, R. (2010). Microwave-assisted synthesis using ionic liquids. Molecular Diversity, 14(1), 3-25.
  • Motasemi, F., & Ani, F. N. (2012). A review on microwave-assisted production of biodiesel. Renewable and Sustainable Energy Reviews, 16(7), 4719-4733.
  • Muginova, S. V., Galimova, A. Z., Polyakov, A. E., & Shekhovtsova, T. N. (2010). Ionic liquids in enzymatic catalysis and biochemical methods of analysis: Capabilities and prospects. Journal of Analytical Chemistry, 65(4), 331-351.
  • Muhammad, N., Elsheikh, Y. A., Mutalib, M. I. A., Bazmi, A. A., Khan, R. A., Khan, H., Rafiq, S., Man, Z., & khan, I. (2015a). An overview of the role of ionic liquids in biodiesel reactions. Journal of Industrial and Engineering Chemistry, 21, 1-10.
  • Muhammad, N., Elsheikh, Y. A., Mutalib, M. I. A., Bazmi, A. A., Khan, R. A., Khan, H., Rafiq, S., Man, Z., & khan, I. (2015b). An overview of the role of ionic liquids in biodiesel reactions. Journal of Industrial and Engineering Chemistry, 21, 1-10.
  • Olivier-Bourbigou, H., Magna, L., & Morvan, D. (2010). Ionic liquids and catalysis: Recent progress from knowledge to applications. Applied Catalysis A: General, 373(1), 1-56.
  • Ruzich, N. I., & Bassi, A. S. (2010). Investigation of enzymatic biodiesel production using ionic liquid as a co-solvent. The Canadian Journal of Chemical Engineering, 88(2), 277-282.
  • Sebayang, A. H., Kusumo, F., Milano, J., Shamsuddin, A. H., Silitonga, A. S., Ideris, F., Siswantoro, J., Veza, I., Mofijur, M., & Reen Chia, S. (2023). Optimization of biodiesel production from rice bran oil by ultrasound and infrared radiation using ANN-GWO. Fuel, 346, 128404.
  • Singh, D., Sharma, D., Soni, S. L., Sharma, S., Kumar Sharma, P., & Jhalani, A. (2020). A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel, 262, 116553.
  • Tierney, J. P., & Lidström, P. (2005). Microwave Assisted Organic Synthesis. Blackwell Scientific, Oxford, U.K.
  • Wu, Q., Chen, H., Han, M., Wang, D., & Wang, J. (2007). Transesterification of Cottonseed Oil Catalyzed by Brønsted Acidic Ionic Liquids. Industrial & Engineering Chemistry Research, 46(24), 7955-7960.
  • Xie, W., & Li, J. (2023). Magnetic solid catalysts for sustainable and cleaner biodiesel production: A comprehensive review. Renewable and Sustainable Energy Reviews, 171, 113017.
  • Yan, J., Zhao, Y., Li, K., Zhang, H., Fan, L., & Lu, Z. (2020). Efficient production of biodiesel from ionic liquid catalyzed esterification using ultrasonic-microwave combined intensification. Chemical Engineering and Processing - Process Intensification, 149, 107870.
  • Zhao, H., Song, Z., Olubajo, O., & Cowins, J. V. (2010). New Ether-Functionalized Ionic Liquids for Lipase-Catalyzed Synthesis of Biodiesel. Applied Biochemistry and Biotechnology, 162(1), 13-23.