Vol. 23, No. 3 (2024), Bio24313 https://doi.org/10.24275/rmiq/Bio24313


Evaluation of the reaction capacity of early warning indicators to failures in biogas production systems


 

Authors

P.M. Alvarado-Reyna, A. Albalate-Ramírez, E.E. García-Balandrán, C. Escamilla-Alvarado, U. Galván-Arzola, L.R. Miramontes-Martínez, P. Rivas-García


Abstract

To avoid inhibition in biogas full-scale production processes, continuous monitoring along with control and instrumentation techniques is needed. A crucial part of the monitoring system is the use of early warning indicators, which facilitate the timely identification of suboptimal performance within the digester and allow the application of corrective measures in an acceptable time frame. This work evaluated the ability of early warning indicators to react to a failure in a biogas production process after an alteration in the substrate composition. The results show that the most used indicators in the literature failed to react satisfactorily to the scheduled failure. Statistical analysis was used to develop an indicator based on the relationship between biogas productivity and volatile fatty acid concentration, which exhibited adequate precision at the programmed failure. This research contributes to the biogas production processes by offering in-depth analysis data and by enhancing our understanding of the methods required for effective monitoring and control.


Keywords

alkalinity, anaerobic digestion, monitoring and control, methane, stability, inhibition.


References

  • Ahring, B. K., Sandberg, M., & Angelidaki, I. (1995). Volatile fatty acids as indicators of process imbalance in anaerobic digestors. Applied Microbiology and Biotechnology, 43(3), 559–565. https://doi.org/10.1007/BF00218466
  • Albalate-Ramírez, A., Alcalá-Rodríguez, M.M., Miramontes-Martínez, L.R., Padilla-Rivera, A., Estrada Baltazar, A., López-Hernández, B.N. and Rivas-García, P. (2022). Energy Production from Cattle Manure within a Life Cycle Assessment Framework: Statistical Optimization of Co-Digestion, Pretreatment, and Thermal Conditions. Sustainability 14 (24). https://doi.org/10.3390/su142416945
  • Albalate-Ramírez, A., Alcalá-Rodríguez, M.M., Miramontes-Martínez, L.R., Estrada-Baltazar, A., Galván-Arzola, U., López-Hernández, B.N., Morones-Ramírez, J.R. and Rivas-García, P. (2023). The importance of substrate formulation on the hydrolysis process in anaerobic digestion: a numerical and experimental study. Revista Mexicana de Ingeniería Química, 22 (2), 1–24. https://doi.org/10.24275/rmiq/Bio239
  • Albalate-Ramírez, A., Rueda-Avellaneda, J. F., López-Hernández, B. N., Alcalá-Rodríguez, M. M., García-Balandrán, E. E., Evrard, D., & Rivas-García, P. (2024). Geographic life cycle assessment of food loss and waste management in Mexico: The reality of distribution and retail centers. Sustainable Production and Consumption, 48, 289–300. https://doi.org/10.1016/j.spc.2024.05.028
  • Alibardi, L. and Cossu, R. (2015). Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Management 36, 147–155. https://doi.org/10.1016/j.wasman.2014.11.019
  • Angelidaki, I., Ahring, B.K., Deng, H. and Schmidt, J.E. (2002). Anaerobic Digestion of Olive Oil Mill Effluents Together with Swine Manure in UASB Reactors. Water Science and Technology 45 (10), 213–218. https://doi.org/10.2166/wst.2002.0334
  • Arhoun, B., Villen-Guzman, M., Gomez-Lahoz, C., Rodriguez-Maroto, J. M., Garcia-Herruzo, F., & Vereda-Alonso, C. (2019). Anaerobic co-digestion of mixed sewage sludge and fruits and vegetable wholesale market waste: Composition and seasonality effect. Journal of Water Process Engineering, 31. https://doi.org/10.1016/j.jwpe.2019   
  • Astals, S., Batstone, D.J., Mata-Alvarez, J. and Jensen, P.D. (2014). Identification of Synergistic Impacts during Anaerobic Co-Digestion of Organic Wastes. Bioresource Technology 169, 421–427. https://doi.org/10.1016/j.biortech.2014.07.024
  • Astals, S., Chávez-Fuentes, J.J., Capson-Tojo, G., Hutňan, M. and Jensen, P.D. (2021). The interaction between lipids and ammoniacal nitrogen mitigates inhibition in mesophilic anaerobic digestion. Waste Management 136 (October), 244–252. https://doi.org/10.1016/j.wasman.2021.10.015
  • Astals, S., Nolla-Ardèvol, V., & Mata-Alvarez, J. (2012). Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: Biogas and digestate. Bioresource Technology, 110, 63–70. https://doi.org/10.1016/j.biortech.2012.01.080
  • Ayodele, O.O., Adekunle, A.E., Adesina, A.O., Pourianejad, S., Zentner, A., Dornack, C. (2021). Stabilization of Anaerobic Co-Digestion of Biowaste Using Activated Carbon of Coffee Ground Biomass. Bioresource Technology 319, 124247. https://doi.org/10.1016/j.biortech.2020.124247
  • Balaguer, M. D., Cassú, C., Vicent, T., & París, J. M. (1992). Start-up of an UASB reactor treating potato-starch wastewater using an alkalimetric follow-up procedure. Biomass and Bioenergy, 3(6), 389–392. https://doi.org/10.1016/0961-9534(92)90034-N
  • Batstone, D., Keller, J., Angelidaki, I., Kalyuzhnyi, S., Pavlostathis, S., Rozzi, A., Sanders, W., Siegrist, H., & Vavilin, V. (2002). The IWA Anaerobic Digestion Model No 1 (ADM1). Water Science & Technology, 45(10), 65-73. https://doi.org/10.2166/wst.2002.0292
  • Bouallagui, H., Lahdheb, H., Romdan, E.B., Rachdi, B. and Hamdi, M. (2009). Improvement of Fruit and Vegetable Waste Anaerobic Digestion Performance and Stability with Co-Substrates Addition. Journal of Environmental Management 90 (5), 1844–1849. https://doi.org/10.1016/j.jenvman.2008.12.002
  • Brown, D., & Li, Y. (2013). Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresource Technology, 127, 275–280. https://doi.org/10.1016/j.biortech.2012.09.081
  • Callaghan, F. J., Wase, D. A. J., Thayanithy, K., & Forster, C. F. (2002). Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass and Bioenergy, 22(1), 71–77. https://doi.org/10.1016/S0961-9534(01)00057-5
  • Castro, L., Escalante, H., Jaimes-Estévez, J., Díaz, L. J., Vecino, K., Rojas, G., & Mantilla, L. (2017). Low cost digester monitoring under realistic conditions: Rural use of biogas and digestate quality. Bioresource Technology, 239, 311–317. https://doi.org/10.1016/j.biortech.2017.05.035
  • Chen, Y., Cheng, J.J., and Creamer, K.S. (2008). Inhibition of anaerobic digestion process: A review. Bioresource Technology 99(10), 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057
  • Dahlin, J., Herbes, C. and Nelles, M. (2015). Biogas Digestate Marketing: Qualitative Insights into the Supply Side. Resources, Conservation and Recycling 104, 152–161. https://doi.org/10.1016/j.resconrec.2015.08.013
  • De Francisci, D., Kougias, P.G., Treu, L., Campanaro, S. and Angelidaki, I. (2015). Microbial Diversity and Dynamicity of Biogas Reactors Due to Radical Changes of Feedstock Composition. Bioresource Technology 176, 56–64. https://doi.org/10.1016/j.biortech.2014.10.126
  • De Santana, A.M. and De Oliveira, R.A. (2005). Desempenho de Reatores Anaeróbios de Fluxo Ascendente Com Manta de Lodo Em Dois Estágios Tratando Águas Residuárias de Suinocultura. Engenharia Agrícola 25 (3), 817–830. https://doi.org/10.1590/s0100-69162005000300029
  • Demirel, B. and Yenigün, O. (2002). The Effects of Change in Volatile Fatty Acid (VFA) Composition on Methanogenic Upflow Filter Reactor (UFAF) Performance. Environmental Technology 23 (10), 1179–1187. https://doi.org/10.1080/09593332308618336
  • EBA. (2020). European Biogas Association. https://www.europeanbiogas.eu/eba-statistical-report-2020/
  • Escalante-Hernández, H., Castro-Molano, L. D. P., Besson, V., & Jaimes-Estévez, J. (2017). Feasibility of the anaerobic digestion of cheese whey in a Plug Flow Reactor (PFR) under local conditions. Ingeniería, investigación y tecnología, 18(3), 264–277. https://doi.org/10.22201/fi.25940732e.2017.18n3.024
  • Escamilla-Alvarado, C., Ríos-Leal, E., Ponce-Noyola, M.T. and Poggi-Varaldo, H.M. (2012). Gas Biofuels from Solid Substrate Hydrogenogenic–Methanogenic Fermentation of the Organic Fraction of Municipal Solid Waste. Process Biochemistry 47, 1572-1587. https://doi.org/10.1016/j.procbio.2011.12.006
  • Evans, P.J., Vandenburgh, S., Miller, T., Amador, J., Stensel, H.D., Stallman, D., Patel, U., Higgins, M., Jayaraman, A., Alptekin, G., Dietz, S., Cates, M. and Libberton, K. (2016). Renewable Energy Production from DoD Installation Solid Waste by Anaerobic Digestion. ESTCP Project ER-200933. Environmental Security Technology Certification Program. Online: https://apps.dtic.mil/sti/citations/AD1021236
  • Fernandes, G. F. R., & De Oliveira, R. A. (2006). Desempenho de processo anaeróbio em dois estágios (reator compartimentado seguido de reator UASB) para tratamento de águas residuárias de suinocultura. Engenharia Agricola, 26(1), 243–256. https://doi.org/10.1590/s0100-69162006000100027
  • Ferrer, I., Vázquez, F. and Font, X. (2010). Long Term Operation of a Thermophilic Anaerobic Reactor: Process Stability and Efficiency at Decreasing Sludge Retention Time. Bioresource Technology 101 (9), 2972–2980. https://doi.org/10.1016/j.biortech.2009.12.006
  • Ferrer, I., Vázquez, F., & Font, X. (2010). Long term operation of a thermophilic anaerobic reactor: Process stability and efficiency at decreasing sludge retention time. Bioresource Technology, 101(9), 2972–2980. https://doi.org/10.1016/j.biortech.2009.12.006
  • Fisgativa, H., Tremier, A. and Dabert, P. (2016). Characterizing the variability of food waste quality: A need for efficient valorisation through anaerobic digestion. Waste Management 50, 264–274. https://doi.org/10.1016/j.wasman.2016.01.041
  • Galván-Arzola, U., Miramontes-Martínez, L.R., Escamilla-Alvarado, C., Botello-Álvarez, J.E., Alcalá-Rodríguez, M.M., Valencia-Vázquez and R., Rivas-García, P. (2022). Anaerobic Digestion of Agro-Industrial Waste: Anaerobic Lagoons in Latin America. Revista Mexicana de Ingeniería Química 21 (2), IA2680. https://doi.org/10.24275/rmiq/IA2680
  • Gerardi, M. H. (2003). The Microbiology of Anaerobic Digesters. https://doi.org/10.1002/0471468967
  • Ghanimeh, S., El Fadel, M., & Saikaly, P. (2012). Mixing effect on thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste. Bioresource Technology, 117, 63–71. https://doi.org/10.1016/j.biortech.2012.02.125
  • Gorris, L. G. M., van Deursen, J. M. A., van der Drift, C., & Vogels, G. D. (1989). Inhibition of propionate degradation by acetate in methanogenic fluidized bed reactors. Biotechnology Letters, 11(1), 61–66. https://doi.org/10.1007/BF01026788
  • Hagos, K., Zong, J., Li, D., Liu, C. and Lu, X. (2017). Anaerobic Co-Digestion Process for Biogas Production: Progress, Challenges and Perspectives. Renewable and Sustainable Energy Reviews 76, 1485–1496. https://doi.org/10.1016/j.rser.2016.11.184
  • Hernández, M.A., Rodríguez Susa, M. and Andres, Y. (2014). Use of Coffee Mucilage as a New Substrate for Hydrogen Production in Anaerobic Co-Digestion with Swine Manure. Bioresource Technology 168, 112–118. https://doi.org/10.1016/j.biortech.2014.02.101 .
  • Hill, D. T., & Bolte, J. P. (1987). Using Volatile Fatty Acid Relationships to Predict Anaerobic Digester Failure. Transactions of the ASAE, 30(2), 0502-0508. https://doi.org/10.13031/2013.31978
  • Hobson, P. N., & Shaw, B. G. (1976). Inhibition of methane production by Methanobacterium formicicum. Water Research, 10(10), 849–852. https://doi.org/10.1016/0043-1354(76)90018-X
  • Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., Buffière, P., Carballa, M., De Wilde, V., Ebertseder, F., Fernández, B., Ficara, E., Fotidis, I., Frigon, J.C., De Laclos, H.F., Ghasimi, D.S.M., Hack, G., Hartel, M., Heerenklage, J., Horvath, I.S., Jenicek, P., Koch, K., Krautwald, J., Lizasoain, J., Liu, J., Mosberger, L., Nistor, M., Oechsner, H., Oliveira, J.V., Paterson, M., Pauss, A., Pommier, S., Porqueddu, I., Raposo, F., Ribeiro, T., Pfund, F.R., Strömberg, S., Torrijos, M., Van Eekert, M., Van Lier, J., Wedwitschka, H. and Wierinck, I. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology 74 (11), 2515–2522. https://doi.org/10.2166/wst.2016.336
  • Holliger, C., Astals, S., Fruteau de Laclos, H., Hafner, S.D., Koch, K. and Weinrich, S. (2020). Towards a Standardization of Biomethane Potential Tests: A Commentary. Water Science and Technology 83 (1), 247-250. https://doi.org/10.2166/wst.2020.569
  • Hussain, A. and Dubey, S.K. (2017). Specific Methanogenic Activity Test for Anaerobic Degradation of Influents. Applied Water Science 7, 535–542. https://doi.org/10.1007/s13201-015-0305-z
  • Jeganathan, J., Nakhla, G. and Bassi, A. (2006). Long-Term Performance of High-Rate Anaerobic Reactors for the Treatment of Oily Wastewater. Environmental Science & Technology 40 (20), 6466–6472. https://doi.org/10.1021/es061071m
  • Jukuri, S., Bastipati, S., Dheravath, B. and Lavudi, S. (2021). Biochemical Process Evaluation of an Anaerobic Digester: A Case Study on Long Sustain Commercial Biogas Plant. Biomass Conversion and Biorefinery 12, 1745–1754. https://doi.org/10.1007/s13399-021-01410-3
  • Kafle, G.K. and Kim, S.H. (2013). Anaerobic Treatment of Apple Waste with Swine Manure for Biogas Production: Batch and Continuous Operation. Applied Energy 103, 61–72. https://doi.org/10.1016/j.apenergy.2012.10.018
  • Kainthola, J., Kalamdhad, A.S. and Goud, V.V. (2020). Optimization of Process Parameters for Accelerated Methane Yield from Anaerobic Co-Digestion of Rice Straw and Food Waste. Renewable Energy 149, 1352–1359. https://doi.org/10.1016/j.renene.2019.10.124
  • Kaspar, H. F., & Wuhrmann, K. (1977). Product inhibition in sludge digestion. Microbial Ecology, 4, 241–248. https://doi.org/https://doi.org/10.1007/BF02015080
  • Kong, X., Wei, Y., Xu, S., Liu, J., Li, H., Liu, Y., & Yu, S. (2016). Inhibiting excessive acidification using zero-valent iron in anaerobic digestion of food waste at high organic load rates. Bioresource Technology, 211, 65–71. https://doi.org/10.1016/j.biortech.2016.03.078
  • Korai, M. S., Mahar, R. B., & Uqaili, M. A. (2018). The seasonal evolution of fruit, vegetable and yard wastes by mono, co and tri-digestion at Hyderabad, Sindh Pakistan. Waste Management, 71, 461–473. https://doi.org/10.1016/j.wasman.2017.09.038
  • Kumar, M., Yan-Liang, O. and Jih-Gaw, L. (2010). Co-Composting of Green Waste and Food Waste at Low C/N Ratio. Waste Management 30 (4), 602–609. https://doi.org/10.1016/j.wasman.2009.11.023
  • Lane, A. G. (1984). Anaerobic digestion of solid fruit waste supplemented with poultry manure in a horizontal plug-flow reactor. Environmental Technology Letters, 5(1–11), 465–470. https://doi.org/10.1080/09593338409384300
  • Lane, A.G. (1984). Laboratory Scale Anaerobic Digestion of Fruit and Vegetable Solid Waste. Biomass 5 (4), 245–259. https://doi.org/10.1016/0144-4565(84)90072-6
  • Lee, C., Araujo, R. C., Koenig, K. M., & Beauchemin, K. A. (2015). Effects of encapsulated nitrate on enteric methane production and nitrogen and energy utilization in beef heifers. Journal of Animal Science, 93(5), 2391-2404. https://doi.org/10.2527/jas.2014-8845
  • Li, D., Chen, L., Liu, X., Mei, Z., Ren, H., Cao, Q. and Yan, Z. (2017). Instability Mechanisms and Early Warning Indicators for Mesophilic Anaerobic Digestion of Vegetable Waste. Bioresource Technology 245 (13), 90–97. https://doi.org/10.1016/j.biortech.2017.07.098
  • Li, D., Ran, Y., Chen, L., Cao, Q., Li, Z., & Liu, X. (2018). Instability diagnosis and syntrophic acetate oxidation during thermophilic digestion of vegetable waste. Water Research, 139, 263–271. https://doi.org/10.1016/J.WATRES.2018.04.019
  • Li, L., He, Q., Wei, Y., He, Q. and Peng, X. (2014). Early Warning Indicators for Monitoring the Process Failure of Anaerobic Digestion System of Food Waste. Bioresource Technology 171, 491–494. https://doi.org/10.1016/j.biortech.2014.08.089
  • Li, L., Peng, X., Wang, X., & Wu, D. (2018). Anaerobic digestion of food waste: A review focusing on process stability. Bioresource Technology, 248, 20–28. https://doi.org/10.1016/j.biortech.2017.07.012
  • Li, Z., Lu, H., Zhang, Z., & Liu, B. (2023). Study on Scale-Up of Anaerobic Fermentation Mixing with Different Solid Content. Fermentation, 9(4). https://doi.org/10.3390/fermentation9040375
  • Liu, S. (2017). Chapter 15 - Sustainability and Stability. Bioprocess Engineering (Second Edition) Kinetics, Sustainability, and Reactor Design, 871-947. https://doi.org/10.1016/B978-0-444-63783-3.00015-0
  • Liu, Y. and Whitman, W.B. (2008). Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Annals of the New York Academy of Sciences 1125 (1), 171–189. https://doi.org/10.1196/annals.1419.019
  • Liu, Y., Xiao, Q., Jia, Z., Wang, C., Ye, X., Du, J.J., Kong, X. and Xi, Y. (2021). Relieving Ammonia Nitrogen Inhibition in High Concentration Anaerobic Digestion of Rural Organic Household Waste by Prussian Blue Analogue Nanoparticles Addition. Bioresource Technology 330, 124979. https://doi.org/10.1016/j.biortech.2021.124979
  • Marchaim, U., & Krause, C. (1993). Propionic to acetic acid ratios in overloaded anaerobic digestion. Bioresource Technology, 43(3), 195–203. https://doi.org/10.1016/0960-8524(93)90031-6
  • Martín-González, L., Font, X., & Vicent, T. (2013). Alkalinity ratios to identify process imbalances in anaerobic digesters treating source-sorted organic fraction of municipal wastes. Biochemical Engineering Journal, 76, 1–5. https://doi.org/10.1016/j.bej.2013.03.016
  • Miramontes-Martínez, L. R., Rivas-García, P., Briones-Cristerna, R. A., Abel-Seabra, J. E., Padilla-Rivera, A., Botello-Álvarez, J. E., Alcalá-Rodríguez, M. M., & Levasseur, A. (2022). Potential of electricity generation by organic wastes in Latin America: a techno-economic-environmental analysis. Biomass Conversion And Biorefinery. https://doi.org/10.1007/s13399-022-03393-1
  • Miramontes-Martínez, L.R., Gomez-Gonzalez, R., Botello-Álvarez, J.E., Escamilla-Alvarado, C., Albalate-Ramírez, A. and Rivas-García, P. (2020). Semi-Continuous Anaerobic Co-Digestion of Vegetable Waste and Cow Manure: A Study of Process Stabilization. Revista Mexicana de Ingeniería Química 19 (3), 1117–1134. https://doi.org/10.24275/rmiq/proc920
  • Miramontes-Martínez, L.R., Rivas-García, P., Albalate-Ramírez, A., Botello-Álvarez, J.E., Escamilla-Alvarado, C., Gomez-Gonzalez, R., Alcalá-Rodríguez, M.M., Valencia-Vázquez, R. and Santos-López, I.A. (2021). Anaerobic Co-Digestion of Fruit and Vegetable Waste: Synergy and Process Stability Analysis. Journal of the Air & Waste Management Association 71 (5). https://doi.org/10.1080/10962247.2021.1873206
  • Montgomery. (2004). Diseño y Análisis de Experimentos. Limusa Wiley.
  • Muntau, M., Lebuhn, M., Polag, D., Bajón-Fernández, Y., & Koch, K. (2021). Effects of CO2 enrichment on the anaerobic digestion of sewage sludge in continuously operated fermenters. Bioresource Technology, 332. https://doi.org/10.1016/j.biortech.2021.125147
  • Nielsen, H.B. and Angelidaki, I. (2008). Congestion of Manure and Industrial Organic Waste at Centralized Biogas Plants: Process Imbalances and Limitations. Water Science and Technology 58 (7), 1521–1528. https://doi.org/10.2166/wst.2008.507
  • Norma Mexicana (1980). NMX-F-068-1980. Alimentos. Determinación de Proteínas. Normas Mexicanas Dirección General de Normas.
  • Norma Mexicana (2001). NMX-AA-034-SCFI-2001. Análisis de Agua. Determinación de Acidez y Alcalinidad En Aguas Naturales, Residuales y Residuales Tratadas. Método de Prueba. Normas Mexicanas Dirección General de Normas.
  • Norma Mexicana (2001). NMX-AA-036-SCFI-2001. Análisis de Agua. Determinación de Acidez y Alcalinidad En Aguas Naturales, Residuales y Residuales Tratadas. Método de Prueba. Normas Mexicanas Dirección General de Normas.
  • Onwosi, C. O., Eke, I. E., Igbokwe, V. C., Odimba, J. N., Ndukwe, J. K., Chukwu, K. O., Aliyu, G. O., & Nwagu, T. N. (2019). Towards effective management of digester dysfunction during anaerobic treatment processes. Renewable & Sustainable Energy Reviews, 116, 109424. https://doi.org/10.1016/j.rser.2019.109424
  • Pereira, E. L., Campos, C. M. M., & Motteran, F. (2013). Physicochemical study of pH, alkalinity and total acidity in a system composed of Anaerobic Baffled Reactor (ABR) in series with Upflow Anaerobic Sludge Blanket reactor (UASB) in the treatment of pig farming wastewater. Acta Scientiarum - Technology, 35(3), 477–483. https://doi.org/10.4025/actascitechnol.v35i3.14069
  • Pereira, E., Campos, C., & Moterani, F. (2009). Efeitos do pH, acidez e alcalinidade na microbiota de um reator anaeróbio de manta de lodo (UASB) tratando efluentes de suinocultura. Ambiente e Agua - An Interdisciplinary Journal of Applied Science, 4(3), 157–168. https://doi.org/10.4136/ambi-agua.109
  • Pilarska, A. A., Pilarski, K., Wolna-Maruwka, A., Boniecki, P., & Zaborowicz, M. (2019). Use of Confectionery Waste in Biogas Production by the Anaerobic Digestion Process. Molecules, 24(1), 37. https://doi.org/10.3390/molecules24010037
  • Pontoni, L., Panicob, A., Salzanoc, E., Frunzod, L., Iodiceb, P., & Pirozzie, F. (2015). Innovative parameters to control the efficiency of anaerobic digestion process. Chemical Engineering, 43. https://doi.org/10.3303/CET1543349   
  • Pullammanappallil, P. C., Chynoweth, D. P., Lyberatos, G., & Svoronos, S. A. (2001). Stable performance of anaerobic digestion in the presence of a high concentration of propionic acid. Bioresource Technology, 78(2), 165–169. https://doi.org/10.1016/S0960-8524(00)00187-5
  • Rasapoor, M., Young, B., Brar, R., Sarmah, A., Zhuang, W.Q. Baroutian, S. (2020). Recognizing the Challenges of Anaerobic Digestion: Critical Steps toward Improving Biogas Generation. Fuel 261, 116497. https://doi.org/10.1016/j.fuel.2019.116497
  • Ren, Y., Wang, C., He, Z., Qin, Y. and Li, Y.Y. (2022). Biogas Production Performance and System Stability Monitoring in Thermophilic Anaerobic Co-Digestion of Lipids and Food Waste. Bioresource Technology 358, 127432. https://doi.org/10.1016/j.biortech.2022.127432
  • Ren, Y., Yu, M., Wu, C., Wang, Q., Gao, M., Huang, Q. and Liu, Y. (2018). A Comprehensive Review on Food Waste Anaerobic Digestion: Research Updates and Tendencies. Bioresource Technology 247, 1069–1076. https://doi.org/10.1016/j.biortech.2017.09.109
  • Ripley, L. E., Boyle, W. C., & Converse, J. C. (1986). Improved Alkalimetric Monitoring for Anaerobic Digestion of High-Strength Wastes. Journal (Water Pollution Control Federation), 58(5), 406–411. https://doi.org/10.2307/25042933
  • Rivas-García, P., Botello-Álvarez, J.E., Miramontes-Martínez, L.R., Cano-Gómez, J.J. and Rico-Martínez, R. (2020). New Model of Hydrolysis in the Anaerobic Co-Digestion of Bovine Manure with Vegetable Waste: Modification of Anerobic Digestion Model No. 1. Revista Mexicana de Ingeniería Química 19 (1), 109–122. https://doi.org/10.24275/rmiq/Bio557
  • Rocamora, I., Wagland, S.T., Villa, R., Simpson, E.W., Fernández, O. and Bajón-Fernández, Y. (2020). Dry Anaerobic Digestion of Organic Waste: A Review of Operational Parameters and Their Impact on Process Performance. Bioresource Technology 299, 122681. https://doi.org/10.1016/j.biortech.2019.122681
  • Saccenti, E., Hendriks, M.H.W.B. and Smilde, A.K. (2020) Corruption of the Pearson correlation coefficient by measurement error and its estimation, bias, and correction under different error models. Sci Rep 10, 438. https://doi.org/10.1038/s41598-019-57247-4  
  • Sánchez, E., Borja, R., Travieso, L., Martín, A., & Colmenarejo, M. F. (2005). Effect of organic loading rate on the stability, operational parameters and performance of a secondary upflow anaerobic sludge bed reactor treating piggery waste. Bioresource Technology, 96(3), 335–344. https://doi.org/10.1016/j.biortech.2004.04.003
  • Santana, A. M. de, & Oliveira, R. A. de. (2005). Desempenho de reatores anaeróbios de fluxo ascendente com manta de lodo em dois estágios tratando águas residuárias de suinocultura. Engenharia Agrícola, 25(3), 817–830. https://doi.org/10.1590/s0100-69162005000300029
  • Siegert, I., & Banks, C. (2005). The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochemistry, 40(11), 3412-3418.
  • Slimane, K., Fathya, S., Assia, K., & Hamza, M. (2014). Influence of inoculums/substrate ratios (ISRs) on the mesophilic anaerobic digestion of slaughterhouse waste in batch mode: Process stability and biogas production. Energy Procedia, 50, 57–63. https://doi.org/10.1016/j.egypro.2014.06.007
  • Søndergaard, M. M., Fotidis, I. A., Kovalovszki, A., & Angelidaki, I. (2015). Anaerobic Co-digestion of Agricultural Byproducts with Manure for Enhanced Biogas Production. Energy and Fuels, 29(12), 8088–8094. https://doi.org/10.1021/acs.energyfuels.5b02373
  • Sun, H., Ni, P., Angelidaki, I., Dong, R., & Wu, S. (2019). Exploring stability indicators for efficient monitoring of anaerobic digestion of pig manure under perturbations. Waste Management, 91, 139-146. https://doi.org/10.1016/j.wasman.2019.05.008
  • Veluchamy, C., Gilroyed, B.H. and Kalamdhad, A.S. (2019). Process Performance and Biogas Production Optimizing of Mesophilic Plug Flow Anaerobic Digestion of Corn Silage. Fuel 253, 1097–1103. https://doi.org/10.1016/j.fuel.2019.05.104
  • Wang, L. H., Wang, Q., Cai, W., & Sun, X. (2012). Influence of mixing proportion on the solid-state anaerobic co-digestion of distiller’s grains and food waste. Biosystems Engineering, 112(2), 130–137. https://doi.org/10.1016/j.biosystemseng.2012.03.006
  • Wang, Y., Zhang, Y., Wang, J., & Meng, L. (2009). Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass and Bioenergy, 33(5), 848–853. https://doi.org/10.1016/j.biombioe.2009.01.007
  • Ward, A.J., Hobbs, P.J., Holliman, P.J. and Jones, D.L. (2008). Optimisation of the Anaerobic Digestion of Agricultural Resources. Bioresource Technology 99 (17), 7928–7940. https://doi.org/10.1016/j.biortech.2008.02.044
  • Wijekoon, K. C., Visvanathan, C., & Abeynayaka, A. (2011). Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresource Technology, 102(9), 5353–5360. https://doi.org/10.1016/j.biortech.2010.12.081
  • Wu, D., Li, L., Zhao, X., Peng, Y., Yang, P. and Peng, X. (2019). Anaerobic Digestion: A Review on Process Monitoring. Renewable and Sustainable Energy Reviews 103, 1–12. https://doi.org/10.1016/j.rser.2018.12.039
  • Wu, Y., Kovalovszki, A., Pan, J., Lin, C., Liu, H., Duan, N. and Angelidaki, I. (2019). Early Warning Indicators for Mesophilic Anaerobic Digestion of Corn Stalk: A Combined Experimental and Simulation Approach. Biotechnology for Biofuels and Bioproducts 12 (106). https://doi.org/10.1186/s13068-019-1442-7
  • Yeole, T. Y., Gokhale, S., Hajarnis, S. R., & Ranade, D. R. (1996). Effect of brackish water on biogas production from cattle dung and methanogens. Bioresource Technology, 58(3), 323–325. https://doi.org/10.1016/S0960-8524(96)00119-8
  • Zahedi, S., Dahunsi, S. O., Perez, M., & Solera, R. (2019). Assessment of Chemical Inhibitor Addition to Improve the Gas Production from Biowaste. Waste and Biomass Valorization, 10(5), 1091–1099. https://doi.org/10.1007/s12649-017-0189-2
  • Zhang, C., Xiao, G., Peng, L., Su, H. and Tan, T. (2013). The Anaerobic Co-Digestion of Food Waste and Cattle Manure. Bioresource Technology 129, 170–176. https://doi.org/10.1016/j.biortech.2012.10.138
  • Zou, J., Nie, E., Lü, F., Peng, W., Zhang, H. and He, P. (2022). Screening of Early Warning Indicators for Full-Scale Dry Anaerobic Digestion of Household Kitchen Waste. Environmental Research 214, 114136. https://doi.org/10.1016/j.envres.2022.114136