- Ahring, B. K., Sandberg, M., & Angelidaki, I. (1995). Volatile fatty acids as indicators of process imbalance in anaerobic digestors. Applied Microbiology and Biotechnology, 43(3), 559–565. https://doi.org/10.1007/BF00218466
- Albalate-Ramírez, A., Alcalá-Rodríguez, M.M., Miramontes-Martínez, L.R., Padilla-Rivera, A., Estrada Baltazar, A., López-Hernández, B.N. and Rivas-García, P. (2022). Energy Production from Cattle Manure within a Life Cycle Assessment Framework: Statistical Optimization of Co-Digestion, Pretreatment, and Thermal Conditions. Sustainability 14 (24). https://doi.org/10.3390/su142416945
- Albalate-Ramírez, A., Alcalá-Rodríguez, M.M., Miramontes-Martínez, L.R., Estrada-Baltazar, A., Galván-Arzola, U., López-Hernández, B.N., Morones-Ramírez, J.R. and Rivas-García, P. (2023). The importance of substrate formulation on the hydrolysis process in anaerobic digestion: a numerical and experimental study. Revista Mexicana de Ingeniería Química, 22 (2), 1–24. https://doi.org/10.24275/rmiq/Bio239
- Albalate-Ramírez, A., Rueda-Avellaneda, J. F., López-Hernández, B. N., Alcalá-Rodríguez, M. M., García-Balandrán, E. E., Evrard, D., & Rivas-García, P. (2024). Geographic life cycle assessment of food loss and waste management in Mexico: The reality of distribution and retail centers. Sustainable Production and Consumption, 48, 289–300. https://doi.org/10.1016/j.spc.2024.05.028
- Alibardi, L. and Cossu, R. (2015). Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Management 36, 147–155. https://doi.org/10.1016/j.wasman.2014.11.019
- Angelidaki, I., Ahring, B.K., Deng, H. and Schmidt, J.E. (2002). Anaerobic Digestion of Olive Oil Mill Effluents Together with Swine Manure in UASB Reactors. Water Science and Technology 45 (10), 213–218. https://doi.org/10.2166/wst.2002.0334
- Arhoun, B., Villen-Guzman, M., Gomez-Lahoz, C., Rodriguez-Maroto, J. M., Garcia-Herruzo, F., & Vereda-Alonso, C. (2019). Anaerobic co-digestion of mixed sewage sludge and fruits and vegetable wholesale market waste: Composition and seasonality effect. Journal of Water Process Engineering, 31. https://doi.org/10.1016/j.jwpe.2019
- Astals, S., Batstone, D.J., Mata-Alvarez, J. and Jensen, P.D. (2014). Identification of Synergistic Impacts during Anaerobic Co-Digestion of Organic Wastes. Bioresource Technology 169, 421–427. https://doi.org/10.1016/j.biortech.2014.07.024
- Astals, S., Chávez-Fuentes, J.J., Capson-Tojo, G., Hutňan, M. and Jensen, P.D. (2021). The interaction between lipids and ammoniacal nitrogen mitigates inhibition in mesophilic anaerobic digestion. Waste Management 136 (October), 244–252. https://doi.org/10.1016/j.wasman.2021.10.015
- Astals, S., Nolla-Ardèvol, V., & Mata-Alvarez, J. (2012). Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: Biogas and digestate. Bioresource Technology, 110, 63–70. https://doi.org/10.1016/j.biortech.2012.01.080
- Ayodele, O.O., Adekunle, A.E., Adesina, A.O., Pourianejad, S., Zentner, A., Dornack, C. (2021). Stabilization of Anaerobic Co-Digestion of Biowaste Using Activated Carbon of Coffee Ground Biomass. Bioresource Technology 319, 124247. https://doi.org/10.1016/j.biortech.2020.124247
- Balaguer, M. D., Cassú, C., Vicent, T., & París, J. M. (1992). Start-up of an UASB reactor treating potato-starch wastewater using an alkalimetric follow-up procedure. Biomass and Bioenergy, 3(6), 389–392. https://doi.org/10.1016/0961-9534(92)90034-N
- Batstone, D., Keller, J., Angelidaki, I., Kalyuzhnyi, S., Pavlostathis, S., Rozzi, A., Sanders, W., Siegrist, H., & Vavilin, V. (2002). The IWA Anaerobic Digestion Model No 1 (ADM1). Water Science & Technology, 45(10), 65-73. https://doi.org/10.2166/wst.2002.0292
- Bouallagui, H., Lahdheb, H., Romdan, E.B., Rachdi, B. and Hamdi, M. (2009). Improvement of Fruit and Vegetable Waste Anaerobic Digestion Performance and Stability with Co-Substrates Addition. Journal of Environmental Management 90 (5), 1844–1849. https://doi.org/10.1016/j.jenvman.2008.12.002
- Brown, D., & Li, Y. (2013). Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresource Technology, 127, 275–280. https://doi.org/10.1016/j.biortech.2012.09.081
- Callaghan, F. J., Wase, D. A. J., Thayanithy, K., & Forster, C. F. (2002). Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass and Bioenergy, 22(1), 71–77. https://doi.org/10.1016/S0961-9534(01)00057-5
- Castro, L., Escalante, H., Jaimes-Estévez, J., Díaz, L. J., Vecino, K., Rojas, G., & Mantilla, L. (2017). Low cost digester monitoring under realistic conditions: Rural use of biogas and digestate quality. Bioresource Technology, 239, 311–317. https://doi.org/10.1016/j.biortech.2017.05.035
- Chen, Y., Cheng, J.J., and Creamer, K.S. (2008). Inhibition of anaerobic digestion process: A review. Bioresource Technology 99(10), 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057
- Dahlin, J., Herbes, C. and Nelles, M. (2015). Biogas Digestate Marketing: Qualitative Insights into the Supply Side. Resources, Conservation and Recycling 104, 152–161. https://doi.org/10.1016/j.resconrec.2015.08.013
- De Francisci, D., Kougias, P.G., Treu, L., Campanaro, S. and Angelidaki, I. (2015). Microbial Diversity and Dynamicity of Biogas Reactors Due to Radical Changes of Feedstock Composition. Bioresource Technology 176, 56–64. https://doi.org/10.1016/j.biortech.2014.10.126
- De Santana, A.M. and De Oliveira, R.A. (2005). Desempenho de Reatores Anaeróbios de Fluxo Ascendente Com Manta de Lodo Em Dois Estágios Tratando Águas Residuárias de Suinocultura. Engenharia Agrícola 25 (3), 817–830. https://doi.org/10.1590/s0100-69162005000300029
- Demirel, B. and Yenigün, O. (2002). The Effects of Change in Volatile Fatty Acid (VFA) Composition on Methanogenic Upflow Filter Reactor (UFAF) Performance. Environmental Technology 23 (10), 1179–1187. https://doi.org/10.1080/09593332308618336
- EBA. (2020). European Biogas Association. https://www.europeanbiogas.eu/eba-statistical-report-2020/
- Escalante-Hernández, H., Castro-Molano, L. D. P., Besson, V., & Jaimes-Estévez, J. (2017). Feasibility of the anaerobic digestion of cheese whey in a Plug Flow Reactor (PFR) under local conditions. Ingeniería, investigación y tecnología, 18(3), 264–277. https://doi.org/10.22201/fi.25940732e.2017.18n3.024
- Escamilla-Alvarado, C., Ríos-Leal, E., Ponce-Noyola, M.T. and Poggi-Varaldo, H.M. (2012). Gas Biofuels from Solid Substrate Hydrogenogenic–Methanogenic Fermentation of the Organic Fraction of Municipal Solid Waste. Process Biochemistry 47, 1572-1587. https://doi.org/10.1016/j.procbio.2011.12.006
- Evans, P.J., Vandenburgh, S., Miller, T., Amador, J., Stensel, H.D., Stallman, D., Patel, U., Higgins, M., Jayaraman, A., Alptekin, G., Dietz, S., Cates, M. and Libberton, K. (2016). Renewable Energy Production from DoD Installation Solid Waste by Anaerobic Digestion. ESTCP Project ER-200933. Environmental Security Technology Certification Program. Online: https://apps.dtic.mil/sti/citations/AD1021236
- Fernandes, G. F. R., & De Oliveira, R. A. (2006). Desempenho de processo anaeróbio em dois estágios (reator compartimentado seguido de reator UASB) para tratamento de águas residuárias de suinocultura. Engenharia Agricola, 26(1), 243–256. https://doi.org/10.1590/s0100-69162006000100027
- Ferrer, I., Vázquez, F. and Font, X. (2010). Long Term Operation of a Thermophilic Anaerobic Reactor: Process Stability and Efficiency at Decreasing Sludge Retention Time. Bioresource Technology 101 (9), 2972–2980. https://doi.org/10.1016/j.biortech.2009.12.006
- Ferrer, I., Vázquez, F., & Font, X. (2010). Long term operation of a thermophilic anaerobic reactor: Process stability and efficiency at decreasing sludge retention time. Bioresource Technology, 101(9), 2972–2980. https://doi.org/10.1016/j.biortech.2009.12.006
- Fisgativa, H., Tremier, A. and Dabert, P. (2016). Characterizing the variability of food waste quality: A need for efficient valorisation through anaerobic digestion. Waste Management 50, 264–274. https://doi.org/10.1016/j.wasman.2016.01.041
- Galván-Arzola, U., Miramontes-Martínez, L.R., Escamilla-Alvarado, C., Botello-Álvarez, J.E., Alcalá-Rodríguez, M.M., Valencia-Vázquez and R., Rivas-García, P. (2022). Anaerobic Digestion of Agro-Industrial Waste: Anaerobic Lagoons in Latin America. Revista Mexicana de Ingeniería Química 21 (2), IA2680. https://doi.org/10.24275/rmiq/IA2680
- Gerardi, M. H. (2003). The Microbiology of Anaerobic Digesters. https://doi.org/10.1002/0471468967
- Ghanimeh, S., El Fadel, M., & Saikaly, P. (2012). Mixing effect on thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste. Bioresource Technology, 117, 63–71. https://doi.org/10.1016/j.biortech.2012.02.125
- Gorris, L. G. M., van Deursen, J. M. A., van der Drift, C., & Vogels, G. D. (1989). Inhibition of propionate degradation by acetate in methanogenic fluidized bed reactors. Biotechnology Letters, 11(1), 61–66. https://doi.org/10.1007/BF01026788
- Hagos, K., Zong, J., Li, D., Liu, C. and Lu, X. (2017). Anaerobic Co-Digestion Process for Biogas Production: Progress, Challenges and Perspectives. Renewable and Sustainable Energy Reviews 76, 1485–1496. https://doi.org/10.1016/j.rser.2016.11.184
- Hernández, M.A., Rodríguez Susa, M. and Andres, Y. (2014). Use of Coffee Mucilage as a New Substrate for Hydrogen Production in Anaerobic Co-Digestion with Swine Manure. Bioresource Technology 168, 112–118. https://doi.org/10.1016/j.biortech.2014.02.101 .
- Hill, D. T., & Bolte, J. P. (1987). Using Volatile Fatty Acid Relationships to Predict Anaerobic Digester Failure. Transactions of the ASAE, 30(2), 0502-0508. https://doi.org/10.13031/2013.31978
- Hobson, P. N., & Shaw, B. G. (1976). Inhibition of methane production by Methanobacterium formicicum. Water Research, 10(10), 849–852. https://doi.org/10.1016/0043-1354(76)90018-X
- Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., Buffière, P., Carballa, M., De Wilde, V., Ebertseder, F., Fernández, B., Ficara, E., Fotidis, I., Frigon, J.C., De Laclos, H.F., Ghasimi, D.S.M., Hack, G., Hartel, M., Heerenklage, J., Horvath, I.S., Jenicek, P., Koch, K., Krautwald, J., Lizasoain, J., Liu, J., Mosberger, L., Nistor, M., Oechsner, H., Oliveira, J.V., Paterson, M., Pauss, A., Pommier, S., Porqueddu, I., Raposo, F., Ribeiro, T., Pfund, F.R., Strömberg, S., Torrijos, M., Van Eekert, M., Van Lier, J., Wedwitschka, H. and Wierinck, I. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology 74 (11), 2515–2522. https://doi.org/10.2166/wst.2016.336
- Holliger, C., Astals, S., Fruteau de Laclos, H., Hafner, S.D., Koch, K. and Weinrich, S. (2020). Towards a Standardization of Biomethane Potential Tests: A Commentary. Water Science and Technology 83 (1), 247-250. https://doi.org/10.2166/wst.2020.569
- Hussain, A. and Dubey, S.K. (2017). Specific Methanogenic Activity Test for Anaerobic Degradation of Influents. Applied Water Science 7, 535–542. https://doi.org/10.1007/s13201-015-0305-z
- Jeganathan, J., Nakhla, G. and Bassi, A. (2006). Long-Term Performance of High-Rate Anaerobic Reactors for the Treatment of Oily Wastewater. Environmental Science & Technology 40 (20), 6466–6472. https://doi.org/10.1021/es061071m
- Jukuri, S., Bastipati, S., Dheravath, B. and Lavudi, S. (2021). Biochemical Process Evaluation of an Anaerobic Digester: A Case Study on Long Sustain Commercial Biogas Plant. Biomass Conversion and Biorefinery 12, 1745–1754. https://doi.org/10.1007/s13399-021-01410-3
- Kafle, G.K. and Kim, S.H. (2013). Anaerobic Treatment of Apple Waste with Swine Manure for Biogas Production: Batch and Continuous Operation. Applied Energy 103, 61–72. https://doi.org/10.1016/j.apenergy.2012.10.018
- Kainthola, J., Kalamdhad, A.S. and Goud, V.V. (2020). Optimization of Process Parameters for Accelerated Methane Yield from Anaerobic Co-Digestion of Rice Straw and Food Waste. Renewable Energy 149, 1352–1359. https://doi.org/10.1016/j.renene.2019.10.124
- Kaspar, H. F., & Wuhrmann, K. (1977). Product inhibition in sludge digestion. Microbial Ecology, 4, 241–248. https://doi.org/https://doi.org/10.1007/BF02015080
- Kong, X., Wei, Y., Xu, S., Liu, J., Li, H., Liu, Y., & Yu, S. (2016). Inhibiting excessive acidification using zero-valent iron in anaerobic digestion of food waste at high organic load rates. Bioresource Technology, 211, 65–71. https://doi.org/10.1016/j.biortech.2016.03.078
- Korai, M. S., Mahar, R. B., & Uqaili, M. A. (2018). The seasonal evolution of fruit, vegetable and yard wastes by mono, co and tri-digestion at Hyderabad, Sindh Pakistan. Waste Management, 71, 461–473. https://doi.org/10.1016/j.wasman.2017.09.038
- Kumar, M., Yan-Liang, O. and Jih-Gaw, L. (2010). Co-Composting of Green Waste and Food Waste at Low C/N Ratio. Waste Management 30 (4), 602–609. https://doi.org/10.1016/j.wasman.2009.11.023
- Lane, A. G. (1984). Anaerobic digestion of solid fruit waste supplemented with poultry manure in a horizontal plug-flow reactor. Environmental Technology Letters, 5(1–11), 465–470. https://doi.org/10.1080/09593338409384300
- Lane, A.G. (1984). Laboratory Scale Anaerobic Digestion of Fruit and Vegetable Solid Waste. Biomass 5 (4), 245–259. https://doi.org/10.1016/0144-4565(84)90072-6
- Lee, C., Araujo, R. C., Koenig, K. M., & Beauchemin, K. A. (2015). Effects of encapsulated nitrate on enteric methane production and nitrogen and energy utilization in beef heifers. Journal of Animal Science, 93(5), 2391-2404. https://doi.org/10.2527/jas.2014-8845
- Li, D., Chen, L., Liu, X., Mei, Z., Ren, H., Cao, Q. and Yan, Z. (2017). Instability Mechanisms and Early Warning Indicators for Mesophilic Anaerobic Digestion of Vegetable Waste. Bioresource Technology 245 (13), 90–97. https://doi.org/10.1016/j.biortech.2017.07.098
- Li, D., Ran, Y., Chen, L., Cao, Q., Li, Z., & Liu, X. (2018). Instability diagnosis and syntrophic acetate oxidation during thermophilic digestion of vegetable waste. Water Research, 139, 263–271. https://doi.org/10.1016/J.WATRES.2018.04.019
- Li, L., He, Q., Wei, Y., He, Q. and Peng, X. (2014). Early Warning Indicators for Monitoring the Process Failure of Anaerobic Digestion System of Food Waste. Bioresource Technology 171, 491–494. https://doi.org/10.1016/j.biortech.2014.08.089
- Li, L., Peng, X., Wang, X., & Wu, D. (2018). Anaerobic digestion of food waste: A review focusing on process stability. Bioresource Technology, 248, 20–28. https://doi.org/10.1016/j.biortech.2017.07.012
- Li, Z., Lu, H., Zhang, Z., & Liu, B. (2023). Study on Scale-Up of Anaerobic Fermentation Mixing with Different Solid Content. Fermentation, 9(4). https://doi.org/10.3390/fermentation9040375
- Liu, S. (2017). Chapter 15 - Sustainability and Stability. Bioprocess Engineering (Second Edition) Kinetics, Sustainability, and Reactor Design, 871-947. https://doi.org/10.1016/B978-0-444-63783-3.00015-0
- Liu, Y. and Whitman, W.B. (2008). Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Annals of the New York Academy of Sciences 1125 (1), 171–189. https://doi.org/10.1196/annals.1419.019
- Liu, Y., Xiao, Q., Jia, Z., Wang, C., Ye, X., Du, J.J., Kong, X. and Xi, Y. (2021). Relieving Ammonia Nitrogen Inhibition in High Concentration Anaerobic Digestion of Rural Organic Household Waste by Prussian Blue Analogue Nanoparticles Addition. Bioresource Technology 330, 124979. https://doi.org/10.1016/j.biortech.2021.124979
- Marchaim, U., & Krause, C. (1993). Propionic to acetic acid ratios in overloaded anaerobic digestion. Bioresource Technology, 43(3), 195–203. https://doi.org/10.1016/0960-8524(93)90031-6
- Martín-González, L., Font, X., & Vicent, T. (2013). Alkalinity ratios to identify process imbalances in anaerobic digesters treating source-sorted organic fraction of municipal wastes. Biochemical Engineering Journal, 76, 1–5. https://doi.org/10.1016/j.bej.2013.03.016
- Miramontes-Martínez, L. R., Rivas-García, P., Briones-Cristerna, R. A., Abel-Seabra, J. E., Padilla-Rivera, A., Botello-Álvarez, J. E., Alcalá-Rodríguez, M. M., & Levasseur, A. (2022). Potential of electricity generation by organic wastes in Latin America: a techno-economic-environmental analysis. Biomass Conversion And Biorefinery. https://doi.org/10.1007/s13399-022-03393-1
- Miramontes-Martínez, L.R., Gomez-Gonzalez, R., Botello-Álvarez, J.E., Escamilla-Alvarado, C., Albalate-Ramírez, A. and Rivas-García, P. (2020). Semi-Continuous Anaerobic Co-Digestion of Vegetable Waste and Cow Manure: A Study of Process Stabilization. Revista Mexicana de Ingeniería Química 19 (3), 1117–1134. https://doi.org/10.24275/rmiq/proc920
- Miramontes-Martínez, L.R., Rivas-García, P., Albalate-Ramírez, A., Botello-Álvarez, J.E., Escamilla-Alvarado, C., Gomez-Gonzalez, R., Alcalá-Rodríguez, M.M., Valencia-Vázquez, R. and Santos-López, I.A. (2021). Anaerobic Co-Digestion of Fruit and Vegetable Waste: Synergy and Process Stability Analysis. Journal of the Air & Waste Management Association 71 (5). https://doi.org/10.1080/10962247.2021.1873206
- Montgomery. (2004). Diseño y Análisis de Experimentos. Limusa Wiley.
- Muntau, M., Lebuhn, M., Polag, D., Bajón-Fernández, Y., & Koch, K. (2021). Effects of CO2 enrichment on the anaerobic digestion of sewage sludge in continuously operated fermenters. Bioresource Technology, 332. https://doi.org/10.1016/j.biortech.2021.125147
- Nielsen, H.B. and Angelidaki, I. (2008). Congestion of Manure and Industrial Organic Waste at Centralized Biogas Plants: Process Imbalances and Limitations. Water Science and Technology 58 (7), 1521–1528. https://doi.org/10.2166/wst.2008.507
- Norma Mexicana (1980). NMX-F-068-1980. Alimentos. Determinación de Proteínas. Normas Mexicanas Dirección General de Normas.
- Norma Mexicana (2001). NMX-AA-034-SCFI-2001. Análisis de Agua. Determinación de Acidez y Alcalinidad En Aguas Naturales, Residuales y Residuales Tratadas. Método de Prueba. Normas Mexicanas Dirección General de Normas.
- Norma Mexicana (2001). NMX-AA-036-SCFI-2001. Análisis de Agua. Determinación de Acidez y Alcalinidad En Aguas Naturales, Residuales y Residuales Tratadas. Método de Prueba. Normas Mexicanas Dirección General de Normas.
- Onwosi, C. O., Eke, I. E., Igbokwe, V. C., Odimba, J. N., Ndukwe, J. K., Chukwu, K. O., Aliyu, G. O., & Nwagu, T. N. (2019). Towards effective management of digester dysfunction during anaerobic treatment processes. Renewable & Sustainable Energy Reviews, 116, 109424. https://doi.org/10.1016/j.rser.2019.109424
- Pereira, E. L., Campos, C. M. M., & Motteran, F. (2013). Physicochemical study of pH, alkalinity and total acidity in a system composed of Anaerobic Baffled Reactor (ABR) in series with Upflow Anaerobic Sludge Blanket reactor (UASB) in the treatment of pig farming wastewater. Acta Scientiarum - Technology, 35(3), 477–483. https://doi.org/10.4025/actascitechnol.v35i3.14069
- Pereira, E., Campos, C., & Moterani, F. (2009). Efeitos do pH, acidez e alcalinidade na microbiota de um reator anaeróbio de manta de lodo (UASB) tratando efluentes de suinocultura. Ambiente e Agua - An Interdisciplinary Journal of Applied Science, 4(3), 157–168. https://doi.org/10.4136/ambi-agua.109
- Pilarska, A. A., Pilarski, K., Wolna-Maruwka, A., Boniecki, P., & Zaborowicz, M. (2019). Use of Confectionery Waste in Biogas Production by the Anaerobic Digestion Process. Molecules, 24(1), 37. https://doi.org/10.3390/molecules24010037
- Pontoni, L., Panicob, A., Salzanoc, E., Frunzod, L., Iodiceb, P., & Pirozzie, F. (2015). Innovative parameters to control the efficiency of anaerobic digestion process. Chemical Engineering, 43. https://doi.org/10.3303/CET1543349
- Pullammanappallil, P. C., Chynoweth, D. P., Lyberatos, G., & Svoronos, S. A. (2001). Stable performance of anaerobic digestion in the presence of a high concentration of propionic acid. Bioresource Technology, 78(2), 165–169. https://doi.org/10.1016/S0960-8524(00)00187-5
- Rasapoor, M., Young, B., Brar, R., Sarmah, A., Zhuang, W.Q. Baroutian, S. (2020). Recognizing the Challenges of Anaerobic Digestion: Critical Steps toward Improving Biogas Generation. Fuel 261, 116497. https://doi.org/10.1016/j.fuel.2019.116497
- Ren, Y., Wang, C., He, Z., Qin, Y. and Li, Y.Y. (2022). Biogas Production Performance and System Stability Monitoring in Thermophilic Anaerobic Co-Digestion of Lipids and Food Waste. Bioresource Technology 358, 127432. https://doi.org/10.1016/j.biortech.2022.127432
- Ren, Y., Yu, M., Wu, C., Wang, Q., Gao, M., Huang, Q. and Liu, Y. (2018). A Comprehensive Review on Food Waste Anaerobic Digestion: Research Updates and Tendencies. Bioresource Technology 247, 1069–1076. https://doi.org/10.1016/j.biortech.2017.09.109
- Ripley, L. E., Boyle, W. C., & Converse, J. C. (1986). Improved Alkalimetric Monitoring for Anaerobic Digestion of High-Strength Wastes. Journal (Water Pollution Control Federation), 58(5), 406–411. https://doi.org/10.2307/25042933
- Rivas-García, P., Botello-Álvarez, J.E., Miramontes-Martínez, L.R., Cano-Gómez, J.J. and Rico-Martínez, R. (2020). New Model of Hydrolysis in the Anaerobic Co-Digestion of Bovine Manure with Vegetable Waste: Modification of Anerobic Digestion Model No. 1. Revista Mexicana de Ingeniería Química 19 (1), 109–122. https://doi.org/10.24275/rmiq/Bio557
- Rocamora, I., Wagland, S.T., Villa, R., Simpson, E.W., Fernández, O. and Bajón-Fernández, Y. (2020). Dry Anaerobic Digestion of Organic Waste: A Review of Operational Parameters and Their Impact on Process Performance. Bioresource Technology 299, 122681. https://doi.org/10.1016/j.biortech.2019.122681
- Saccenti, E., Hendriks, M.H.W.B. and Smilde, A.K. (2020) Corruption of the Pearson correlation coefficient by measurement error and its estimation, bias, and correction under different error models. Sci Rep 10, 438. https://doi.org/10.1038/s41598-019-57247-4
- Sánchez, E., Borja, R., Travieso, L., Martín, A., & Colmenarejo, M. F. (2005). Effect of organic loading rate on the stability, operational parameters and performance of a secondary upflow anaerobic sludge bed reactor treating piggery waste. Bioresource Technology, 96(3), 335–344. https://doi.org/10.1016/j.biortech.2004.04.003
- Santana, A. M. de, & Oliveira, R. A. de. (2005). Desempenho de reatores anaeróbios de fluxo ascendente com manta de lodo em dois estágios tratando águas residuárias de suinocultura. Engenharia Agrícola, 25(3), 817–830. https://doi.org/10.1590/s0100-69162005000300029
- Siegert, I., & Banks, C. (2005). The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochemistry, 40(11), 3412-3418.
- Slimane, K., Fathya, S., Assia, K., & Hamza, M. (2014). Influence of inoculums/substrate ratios (ISRs) on the mesophilic anaerobic digestion of slaughterhouse waste in batch mode: Process stability and biogas production. Energy Procedia, 50, 57–63. https://doi.org/10.1016/j.egypro.2014.06.007
- Søndergaard, M. M., Fotidis, I. A., Kovalovszki, A., & Angelidaki, I. (2015). Anaerobic Co-digestion of Agricultural Byproducts with Manure for Enhanced Biogas Production. Energy and Fuels, 29(12), 8088–8094. https://doi.org/10.1021/acs.energyfuels.5b02373
- Sun, H., Ni, P., Angelidaki, I., Dong, R., & Wu, S. (2019). Exploring stability indicators for efficient monitoring of anaerobic digestion of pig manure under perturbations. Waste Management, 91, 139-146. https://doi.org/10.1016/j.wasman.2019.05.008
- Veluchamy, C., Gilroyed, B.H. and Kalamdhad, A.S. (2019). Process Performance and Biogas Production Optimizing of Mesophilic Plug Flow Anaerobic Digestion of Corn Silage. Fuel 253, 1097–1103. https://doi.org/10.1016/j.fuel.2019.05.104
- Wang, L. H., Wang, Q., Cai, W., & Sun, X. (2012). Influence of mixing proportion on the solid-state anaerobic co-digestion of distiller’s grains and food waste. Biosystems Engineering, 112(2), 130–137. https://doi.org/10.1016/j.biosystemseng.2012.03.006
- Wang, Y., Zhang, Y., Wang, J., & Meng, L. (2009). Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass and Bioenergy, 33(5), 848–853. https://doi.org/10.1016/j.biombioe.2009.01.007
- Ward, A.J., Hobbs, P.J., Holliman, P.J. and Jones, D.L. (2008). Optimisation of the Anaerobic Digestion of Agricultural Resources. Bioresource Technology 99 (17), 7928–7940. https://doi.org/10.1016/j.biortech.2008.02.044
- Wijekoon, K. C., Visvanathan, C., & Abeynayaka, A. (2011). Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresource Technology, 102(9), 5353–5360. https://doi.org/10.1016/j.biortech.2010.12.081
- Wu, D., Li, L., Zhao, X., Peng, Y., Yang, P. and Peng, X. (2019). Anaerobic Digestion: A Review on Process Monitoring. Renewable and Sustainable Energy Reviews 103, 1–12. https://doi.org/10.1016/j.rser.2018.12.039
- Wu, Y., Kovalovszki, A., Pan, J., Lin, C., Liu, H., Duan, N. and Angelidaki, I. (2019). Early Warning Indicators for Mesophilic Anaerobic Digestion of Corn Stalk: A Combined Experimental and Simulation Approach. Biotechnology for Biofuels and Bioproducts 12 (106). https://doi.org/10.1186/s13068-019-1442-7
- Yeole, T. Y., Gokhale, S., Hajarnis, S. R., & Ranade, D. R. (1996). Effect of brackish water on biogas production from cattle dung and methanogens. Bioresource Technology, 58(3), 323–325. https://doi.org/10.1016/S0960-8524(96)00119-8
- Zahedi, S., Dahunsi, S. O., Perez, M., & Solera, R. (2019). Assessment of Chemical Inhibitor Addition to Improve the Gas Production from Biowaste. Waste and Biomass Valorization, 10(5), 1091–1099. https://doi.org/10.1007/s12649-017-0189-2
- Zhang, C., Xiao, G., Peng, L., Su, H. and Tan, T. (2013). The Anaerobic Co-Digestion of Food Waste and Cattle Manure. Bioresource Technology 129, 170–176. https://doi.org/10.1016/j.biortech.2012.10.138
- Zou, J., Nie, E., Lü, F., Peng, W., Zhang, H. and He, P. (2022). Screening of Early Warning Indicators for Full-Scale Dry Anaerobic Digestion of Household Kitchen Waste. Environmental Research 214, 114136. https://doi.org/10.1016/j.envres.2022.114136
|