Vol. 24, No. 1 (2025), Alim24386 https://doi.org/10.24275/rmiq/Alim24386


Whey as a substrate for biogenic production of exopolysaccharide


 

Authors

L. F. Patlan-Velazquez, L.G. González-Olivares, M. García-Garibay, G. Rodríguez-Serrano, L. Gómez-Ruiz, S. Alatorre-Santamaría, A. E. Cruz-Guerrero


Abstract

Whey, a byproduct of the dairy industry, is often discarded during cheese production despite its considerable protein and lactose content. One of the alternatives for revalorizing whey is obtaining compounds of industrial interest using fermentative microorganisms. Therefore, the objective of this project was to use sweet whey (SW) as a matrix for the biogenic production of an exopolysaccharide (EPS) using lactic acid bacteria. The strains used were Lactobacillus delbrueckii subsp bulgaricus NCFB 2772 and Streptococcus thermophilus SY-102 in monoculture and coculture (1:1 ratio). Microbial growth, changes in pH, EPS production, and the release of free amino groups were monitored to determine the degree of proteolysis over 48 hours of fermenting at 37 °C. The results showed that the coculture system had the highest microbial concentration, reaching 7 x 1011 CFU/mL. Likewise, it also had the lowest pH (3.77) with more outstanding production of EPS (1.49 mg/mL) and free amino groups (0.20 mg/mL) compared to the two monocultures. This difference can be attributed to the symbiosis between both strains, concluding that the protocooperation process could be involved in the enhanced production of exopolysaccharides.


Keywords

Whey, Lactic acid bacteria, Exopolysaccharides, Proteolysis, Symbiosis.


References

  • Adler-Nissen, J. (1979). Determination of the degree of hydrolysis of food protein    hydrolysates by trinitrobenzensulfonic acid. Journal of Agricultural and Food Chemistry, 27 (6),1256-1262. https://doi.org/10.1021/jf60226a042
  • Ahuja, V., Bhatt, A. K., Banu, J. R., Kumar, V., Kumar, G., Yang, Y.-H. and Bhatia, S. K. (2023). Microbial exopolysaccharide composites in biomedicine and Healthcare: Trends and advances. Polymers, 15(7), 1801. https://doi.org/10.3390/polym15071801
  • Amani, E., Eskandari, M. and H., Shekarforoush, S. (2016). The effect of proteolytic activity of starter cultures on technologically important properties of yogurt. Food Science & Nutrition, 5(3), 525–537. https://doi.org/10.1002/fsn3.427
  • Bendig, T., Ulmer, A., Luzia, L., Müller, S., Sahle, S., Bergmann, F. T., Lösch, M., Erdemann, F., Zeidan, A. A., Mendoza, S. N., Teusink, B., Takors, R., Kummer, U. and Figueiredo, A. S. (2023). The pH-dependent lactose metabolism of Lactobacillus delbrueckii subsp. bulgaricus: An integrative view through a mechanistic computational model. Journal of Biotechnology, 374, 90–100. https://doi.org/10.1016/j.jbiotec.2023.08.001

 

  • Bintsis, T. (2018) Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiology, 4, 665–684.
  • https://doi.org/ 10.3934/microbiol.2018.4.665
  • Borrás-Enríquez, A. J., Gonzalez-Escobar, J. L., Delgado-Portales, R. E., Pérez-Barba, M. R. and Moscosa-Santillán, M. (2023). Screening of main factors in microencapsulation of two Bifidobacterium strains by spray drying. Revista Mexicana de Ingeniería Química 22(3). https: //doi.org/10.24275/rmiq/Alim2319

 

  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72(1), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Brüls, M., Foroutanparsa, S., Maljaars, C. E., Olsthoorn, M., Tas, R. P. and Voets, I. K. (2024). Investigating the impact of exopolysaccharides on yogurt network mechanics and syneresis through quantitative microstructural analysis. Food Hydrocolloids, 150, 109629. https://doi.org/10.1016/j.foodhyd.2023.109629

 

  • Carrero-Puentes, S., Fuenmayor, C., Jiménez-Pérez, C., Guzman-Rodríguez, F., Gomez- Ruiz, L., Rodríguez-Serrano, G., Alatorre-Santamaría, S., García-Garibay, M. and Cruz-Guerrero, A. (2022). Development and characterization of an exopolysaccharide functionalized acid whey cheese (requeson) using Lactobacillus delbrueckii ssp. bulgaricus. Journal of Food Processing and Preservation, 00, Article e16095. https://doi.org/10.1111/jfpp.16095
  • Castilla-Marroquín, J.D., Hernández-Martínez, R., de la Vequia, H.D., Ríos-Corripio, M.A., Hernández-Rosas, J., López, M.R. and Hernández-Rosas, F. (2020). Dextran synthesis by native sugarcane microorganisms. Revista Mexicana de Ingeniería Química 19, 177-185. https://doi.org/10.24275/rmiq/Bio1793
  • Dubois, M., Gilles, K., Hamilton, J., Rebers, P. and Smith, F. (1956). Colorimetric Method for  Determination  of  Sugars  and  Related  Substances. Analytical  Chemistry28(3),  350-356.
  • Domínguez-Soberanes, J. (1998). Caracterización reológica y de textura de un producto fermentado producido por L. delbrueckii ss. bulgaricus NCFB2772 Tesis de Maestría en Biotecnología, Universidad Autónoma Metropolitana, México.
  • Fernandez-Espla, M. D., Garault, P., Monnet,V. and Rul,F. (2000). Streptococcus thermophilus Cell Wall-Anchored Proteinase: Release, Purification, and Biochemical and Genetic Characterization. Applied and Environmental Microbiology, 66(11), 4772–4778. https://doi.org/10.1128/aem.66.11.4772-4778.2000
  • Gayosso-Sánchez, A. P., Hernández-Martínez, R., Pacheco-López, N. A., Herrera-Corredor, J. A., Valdivia-Rivera, S. and Herrera-Pool, I. E. (2024) Effect of the carbon-nitrogen ratio on the co-production of polyhydroxyalkanoates and exopolysaccharides by Enterobacter soli. Revista Mexicana de Ingeniería Química, 23(2), Bio24211. https://doi.org/10.24275/rmiq/Bio24211
  • Hernández-Riveros, E., Olvera-Rosales, L.B., Jaimez-Ordaz, J., Pérez-Escalante, E., Contreras-López, E., Cruz-Guerrero, A.E. and González-Olivares, L.G. (2024) Production of an Ice Cream Base with Added Lacticaseibacillus rhamnosus GG and Aguamiel Syrup: Probiotic Viability and Antihypertensive Capacity. Dairy, 5 (3), 451–463. https://doi.org/10.3390/dairy5030035
  • Hernández-Rosas, F., Castilla-Marroquín, J.D., Loeza-Corte, J.M., Lizardi-Jiménez, M.A. and Martínez, R.H. (2021). The importance of carbon and nitrogen sources on exopolysaccharide synthesis by lactic acid bacteria and their industrial importance. Revista Mexicana de Ingeniería Química, 20(3), Bio2429. https://doi.org/10.24275/rmiq/Bio2429
  • Kavitake, D., Singh, S. P., Kandasamy, S., Devi, P. B. and Shetty, P. H. (2020). Report on aflatoxin-binding activity of galactan exopolysaccharide produced by Weissella confusa KR780676. 3 Biotech, 10(4). https://doi.org/10.1007/s13205-020-02173-w
  • Korcz, E., Varga, L. and Kerényi, Z. (2021). Relationship between total cell counts and exopolysaccharide production of Streptococcus thermophilus T9 in reconstituted skim milk. LWT, 148, Article 111775. https://doi.org/10.1016/j.lwt.2021.111775
  • Lavelli, V. and Beccalli, M. P. (2022). Cheese whey recycling in the perspective of the circular economy: Modeling processes and the supply chain to design the involvement of the small and medium enterprises. Trends in Food Science and Technology126, 86-98. https://doi.org/10.1016/j.tifs.2022.06.013
  • Liu, E., Zheng, H., Hao, P., Konno, T., Yu, Y., Kume, H., Oda, M. and Ji, Z. (2012). A model of proteolysis and amino acid biosynthesis for Lactobacillus delbrueckii subsp. bulgaricus in whey. Current Microbiology, 65(6),742-751. https://doi.org/10.1007/s00284-012-0214-4
  • Liu, E., Zheng, H., Shi, T., Ye, L., Konno, T., Oda, M., Shen, H. and Ji, Z.-S. (2016). Relationship between Lactobacillus bulgaricus and Streptococcus thermophilus under whey conditions: Focus on amino acid formation. International Dairy Journal, 56, 141-150.  https://doi.org/10.1016/j.idairyj.2016.01.019
  • Liu, Y.-K., Kuo, H.-C., Lai, C.-H. and Chou, C.-C. (2020). Single amino acid utilization for bacterial categorization. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-69686-5
  • Macwan, S. R., Dabhi, B. K., Parmar, S. C. and Aparnathi, K. D. (2016) Whey and its utilization. International Journal of Current Microbiology and Applied Sciences, 5 134–155. http://dx.doi.org/10.20546/ijcmas.2016.508.016
  • Mazorra-Manzano, M. Á., Ramírez-Montejo, H., Lugo-Sánchez, M. E., González-Córdova, A. F. and Vallejo-Córdoba, B. (2019). Caracterización del Lactosuero y Requeson Proveniente del Proceso de elaboración de queso cocido (asadero) región Sonora. Nova Scientia, 11(23), 220–233. https://doi.org/10.21640/ns.v11i23.2072
  • Mennah-Govela, Y. A., Singh, R. P. and Bornhorst, G. M. (2019) Buffering capacity of protein-based model food systems in the context of gastric digestion. Food & Function, 10, 6074–6087. https://doi.org/10.1039/C9FO01160A
  • Moradi, M., Guimarães, J. T. and Sahin, S. (2021). Current applications of exopolysaccharides from lactic acid bacteria in the development of food active edible packaging. Current Opinion in Food Science, 40, 33–39. https://doi.org/10.1016/j.cofs.2020.06.001
  • Morales-García, Y. E., Corral-Lugo, A., Pazos-Rojas, L. A., Martínez-Contreras, R. D., Muñoz-Rojas, J., and Ramírez-Valverde, A. (2012). Cuantificación de bacterias cultivables mediante el método de “Goteo en Placa por Sellado (o estampado) Masivo”. Revista Colombiana de Biotecnología, 14(2), 147–156. Available at: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/37416. Accessed June 5, 2024.
  • Ochoa-Flores, A. A., Hernández-Becerra, J. A., Velázquez-Martínez, J. R., Pina-Gutiérrez, J. M., Hernández-Castellano, L. E., Toro-Mujica, P., Chay-Canul, A.J. and Vargas-Bello-Pérez, E. (2021). Chemical and fatty acid composition of Manchego type and Panela cheeses manufactured from either hair sheep milk or cow milk. Journal of Dairy Science, 104(7), 7457–7465. https://doi.org/10.3168/jds.2020-19301
  • Oleksy-Sobczak, M., Klewicka, E. and Piekarska-Radzik, L. (2020). Exopolysaccharides production by Lactobacillus rhamnosus strains - optimization of synthesis and extraction conditions. LWT, 122, Article 109055. https://doi.org/10.1016/j. lwt.2020.109055
  • Olvera-Rosales, L. B., Cruz-Guerrero, A. E., Jaimez-Ordaz, J., Pérez-Escalante, E., Quintero-Lira, A., Ramírez-Moreno, E., Contreras-López, E. and González-Olivares, L. G. (2023). Differences in the proteolytic system of lactic acid bacteria affect the release of DPP-IV inhibitory peptides from whey proteins. Dairy, 4(3), 515–526. https://doi.org/10.3390/dairy4030035
  • Østlie, H. M., Treimo, J. and Narvhus, J. A. (2005). Effect of temperature on growth and metabolism of probiotic bacteria in milk. International Dairy Journal15(10), 989-997. https://doi.org/10.1016/j.idairyj.2004.08.015
  • Pescuma, M., de-Valdez, G. y Mozzi, F. (2015). Whey-derived valuable products obtained by microbial fermentation. Applied Microbiology and Biotechnology, 99 (15), 6183-6196. https://10.1007/s00253-015-6766-z
  • Rama, G. R., Kuhn, D., Beux, S., Maciel, M. J., and Volken de Souza, C. F. (2019). Potential applications of dairy whey for the production of lactic acid bacteria cultures. International Dairy Journal, 98, 25–37. https://doi.org/10.1016/j.idairyj.2019.06.012
  • Rodríguez-Serrano, G. M., Garcia-Garibay, J. M., Cruz-Guerrero, A. E., Gomez-Ruiz, L. del C., Ayala-Nino, A., Castaneda-Ovando, A. and Gonzalez-Olivares, L. G. (2018). Proteolytic System of Streptococcus thermophilus. Journal of Microbiology and Biotechnology, 28(10), 1581–1588. https://doi.org/10.4014/jmb.1807.07017
  • Ruijgrok, G., Wu, D.-Y., Overkleeft, H. S. and Codée, J. D. C. (2024). Synthesis and application of bacterial exopolysaccharides. Current Opinion in Chemical Biology, 78, 102418. https://doi.org/10.1016/j.cbpa.2023.102418
  • Sebastián‐Nicolás, J. L., González‐Olivares, L. G., Vázquez‐Rodríguez, G. A., Lucho‐Constatino, C. A., Castañeda‐Ovando, A. and Cruz‐Guerrero, A. E. (2020). Valorization of whey using a Biorefinery. Biofuels, Bioproducts and Biorefining, 14(5), 1010–1027. https://doi.org/10.1002/bbb.2100
  • Sebastián-Nicolas, J. L., Contreras-López, E., Ramírez-Godínez, J., Cruz-Guerrero, A. E., Rodríguez-Serrano, G. M., Añorve-Morga, J., Jaimez-Ordaz, J., Castañeda-Ovando, A., Pérez-Escalante, E., Ayala-Niño, A. and González-Olivares, L. G. (2021). Milk fermentation by Lacticaseibacillus rhamnosus GG and Streptococcus thermophilus SY-102: Proteolytic profile and Ace-inhibitory activity. Fermentation, 7(4), 215. https://doi.org/10.3390/fermentation7040215
  • Sebastián-Nicolas, J. L., Contreras-López, Pérez-Flores, J.G. Jaimez-Ordaz, J., Pérez-Escalante, E.,Vélez-Rivera, N., González-Olivares, L. G. and Ramírez-Godínez, J. (2024) Improvement of the antioxidant capacity of a yogurt enriched with aqueous ginger extract (Zingiber officinale). Revista Mexicana de Ingeniería Química, 23(3), Bio24254. https://doi.org/10.24275/rmiq/Bio24254
  • Settachaimongkon, S., Nout, M. J. R., Antunes Fernandes, E. C., Hettinga, K. A., Vervoort, J. M., van Hooijdonk, T. C. M., Zwietering, M. H., Smid, E. J. and van Valenberg, H. J. F. (2014). Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt. International Journal of Food Microbiology, 177, 29–36. https://doi.org/10.1016/j.ijfoodmicro.2014.02.008
  • Shraddha RC, C. R. and Nalawade T, K. A. (2015). Whey based beverage: Its functionality, formulations, health benefits and applications. Journal of Food Processing and Technology, 6(10). https://doi.org/10.4172/2157-7110.1000495
  • Shukla, A., Mehta, K., Parmar, J., Pandya, J. and Saraf, M. (2019). Depicting the exemplary knowledge of Microbial Exopolysaccharides in a Nutshell. European Polymer Journal, 119, 298–310. https://doi.org/10.1016/j.eurpolymj.2019.07.044
  • Skryplonek, K., Dmytrów, I. and Mituniewicz-Małek, A. (2019) Probiotic fermented beverages based on acid whey. Journal of Dairy Science, 102, 7773–7780. https://doi.org/10.3168/jds.2019-16385
  • Smid, E. J. and Lacroix, C. (2013). Microbe-microbe interactions in mixed culture food fermentations. Current Opinion in Biotechnology, 24(2), 148-154. https://doi.org/10.1016/j.copbio.2012.11.007
  • Smithers, G. W. (2015). Whey-ing up the options – yesterday, Today and Tomorrow. International Dairy Journal, 48, 2–14. https://doi.org/10.1016/j.idairyj.2015.01.011
  • Solieri, L., Valentini, M., Cattivelli, A., Sola, L., Helal, A., Martini, S. and Tagliazucchi, D. (2022). Fermentation of whey protein concentrate by streptococcus thermophilus strains releases peptides with biological activities. Process Biochemistry, 121, 590–600. https://doi.org/10.1016/j.procbio.2022.08.003
  • Soriano-Perez, S., Flores-Velez, L., Alonso-Davila, P., Cervantes-Cruz, G. and Arriaga, S. (2011). Production of lactic acid from cheese whey by batch cultures of Lactobacillus helveticus. Annals of Microbiology, 62(1), 313–317. https://doi.org/10.1007/s13213-011-0264-z
  • Spellman, D., McEvoy, E., O’Cuinn, G. and FitzGerald, R. J. (2003). Proteinase and exopeptidase hydrolysis of whey protein: Comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis. International Dairy Journal, 13(6), 447–453. https://doi.org/10.1016/s0958-6946(03)00053-0
  • Srinivash, M., Krishnamoorthi, R., Mahalingam, P. U. and Malaikozhundan, B. (2023). Exopolysaccharide from Lactococcus hircilactis CH4 and Lactobacillus delbrueckii GRIPUMSK as new therapeutics to treat biofilm pathogens, oxidative stress and human colon adenocarcinoma. International Journal of Biological Macromolecules, 250, Article 126171. https://doi.org/10.1016/j.ijbiomac.2023.126171
  • Tang, W., Dong, M., Wang, W., Han, S., Rui, X., Chen, X., Jiang, M., Zhang, Q., Wu, J. and Li, W. (2017). Structural characterization and antioxidant property of released exopolysaccharides from Lactobacillus delbrueckii ssp. bulgaricus SRFM-1. Carbohydrate Polymers, 173, 654–664. https://doi.org/10.1016/j.carbpol.2017.06.039
  • Ulmer, A., Erdemann, F., Mueller, S., Loesch, M., Wildt, S., Jensen, M.L., Gaspar, P., Zeidan, A.A., and Takors, R. (2022) Differential amino acid uptake and depletion in mono-cultures and co-cultures of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus in a novel semi-synthetic medium. Microorganisms 2022, 10, 1771. https://doi.org/10.3390/microorganisms10091771
  • Wherry, B., Barbano, D. M. and Drake, M. A. (2019). Use of acid whey protein concentrate as an ingredient in nonfat cup set-style yogurt. Journal of Dairy Science, 102(10), 8768–8784. https://doi.org/10.3168/jds.2019-16247
  • Yıldız, S., Erbil, N. and Düzgüner, V. (2023). Production of vinegar from Kashar cheese whey and volatile component profile, antibacterial effect, and antioxidant potential of whey vinegar. Food Bioscience, 56, 103309. https://doi.org/10.1016/j.fbio.2023.103309
  • Zandona, E., Blažić, M. and Režek Jambrak, A. (2021). Whey utilization: Sustainable uses and environmental approach. Food Technology and Biotechnology, 59 (2), 147–161. https://doi.org/10.17113/ftb.59.02.21.6968
  • Zhao, G., Zhao, S., Hagner Nielsen, L., Zhou, F., Gu, L., Tilahun Tadesse, B. and Solem, C. (2023). Transforming acid whey into a resource by selective removal of lactic acid and galactose using optimized food-grade microorganisms. Bioresource Technology, 387, 129594. https://doi.org/10.1016/j.biortech.2023.129594