Ait Hmazi, F., Bagar, H., Madani, A., & Mrani, I. (2024). A novel approach for modelling and predicting the drying kinetics of couscous grains using artificial neural networks. Journal of Food Composition and Analysis, 132, 106301. https://doi.org/10.1016/j.jfca.2024.106301
Cai, J., Yang, Y., Cai, W., & Bridgwater, T. (2017). Drying Kinetic Analysis of Municipal Solid Waste Using Modified Page Model and Pattern Search Method. Waste and Biomass Valorization, 8(2), 301-312. https://doi.org/10.1007/s12649-016-9570-9
Chasiotis, V. K., Tzempelikos, D. A., Filios, A. E., & Moustris, K. P. (2020). Artificial neural network modelling of moisture content evolution for convective drying of cylindrical quince slices. Computers and Electronics in Agriculture, 172, 105074. https://doi.org/10.1016/j.compag.2019.105074
de Lima, A. G. B., Queiroz, M. R., & Nebra, S. A. (2002). Simultaneous moisture transport and shrinkage during drying of solids with ellipsoidal configuration. Chemical Engineering Journal, 86(1), 85-93. https://doi.org/10.1016/S1385-8947(01)00276-5
Demiray, E., & Tulek, Y. (2017). Effect of temperature on water diffusion during rehydration of sun-dried red pepper (Capsicum annuum L.). Heat and Mass Transfer, 53, 1829-1834. https://doi.org/10.1007/s00231-016-1940-0
Dias, C., Fonseca, A. M., Amaro, A. L., Vilas-Boas, A. A., Oliveira, A., Santos, S. A., Silvestre, A. J., Rocha, S. M., Isidoro, N., & Pintado, M. (2020). Natural-based antioxidant extracts as potential mitigators of fruit browning. Antioxidants, 9(8), 715. https://doi.org/10.3390/antiox9080715
Espinosa-Solares, T., & Domínguez-Puerto, R. (2023). Influence of power density and geometry of young cactus cladodes (Opuntia ficus-indica (L.) Mill.) on intermittent microwave drying kinetics. Revista Mexicana de Ingeniería Química, 22(1), Alim2965. https://doi.org/10.24275/rmiq/Alim2965
Finocchiaro, F., Ferrari, B., Gianinetti, A., Dall'Asta, C., Galaverna, G., Scazzina, F., & Pellegrini, N. (2007). Characterization of antioxidant compounds of red and white rice and changes in total antioxidant capacity during processing. Molecular nutrition & food research, 51(8), 1006-1019.
Guido, L. F., & Moreira, M. M. (2017). Techniques for extraction of brewer’s spent grain polyphenols: A review. Food and Bioprocess Technology, 10, 1192-1209. https://doi.org/10.1007/s11947-017-1913-4
Gutiérrez-Martínez, S., Hernández-Varela, J., Chanona-Pérez, J., Méndez-Méndez, J., González-Martínez, H., Perea-Flores, M. d. J., Mendoza-Vázquez, S., & González-Victoriano, L. (2024). Study of drying, thermal, shrinkage, and color kinetics using digital and thermographic imaging of potato slices under real-time convective drying. Revista Mexicana de Ingeniería Química, 23(3), Alim24322. https://doi.org/10.24275/rmiq/Alim24322
Henríquez, C., Córdova, A., Almonacid, S., & Saavedra, J. (2014). Kinetic modeling of phenolic compound degradation during drum-drying of apple peel by-products. Journal of Food Engineering, 143, 146-153. https://doi.org/10.1016/j.jfoodeng.2014.06.037
Jebri, M., Tarrazó, J., Bon, J., Desmorieux, H., & Romdhane, M. (2018). Intensification of the convective drying process of Salvia officinalis: Modeling and optimization. Food Science and Technology International, 24(5), 382-393. https://doi.org/10.1177/1082013218759363
Jing, Y., CHEN, J.-f., ZHAO, Y.-y., & MAO, L.-c. (2010). Effects of drying processes on the antioxidant properties in sweet potatoes. Agricultural Sciences in China, 9(10), 1522-1529. https://doi.org/10.1016/S1671-2927(09)60246-7
Karaaslan, M., Yilmaz, F. M., Cesur, Ö., Vardin, H., Ikinci, A., & Dalgiç, A. C. (2014). Drying kinetics and thermal degradation of phenolic compounds and anthocyanins in pomegranate arils dried under vacuum conditions. International Journal of Food Science & Technology, 49(2), 595-605. https://doi.org/10.1111/ijfs.12342
Kaveh, M., Çetin, N., Khalife, E., Abbaspour-Gilandeh, Y., Sabouri, M., & Sharifian, F. (2023). Machine learning approaches for estimating apricot drying characteristics in various advanced and conventional dryers. Journal of Food Process Engineering, 46(12), e14475. https://doi.org/10.1111/jfpe.14475
Khan, M. I. H., Sablani, S. S., Joardder, M. U. H., & Karim, M. A. (2022). Application of machine learning-based approach in food drying: opportunities and challenges. Drying Technology, 40(6), 1051-1067. https://doi.org/10.1080/07373937.2020.1853152
Krokida, M., & Philippopoulos, C. (2005). Rehydration of dehydrated foods. Drying Technology, 23(4), 799-830. https://doi.org/10.1081/DRT-200054201
Krokida, M. K., & Maroulis, Z. B. (2001). Structural properties of dehydrated products during rehydration. International Journal of Food Science & Technology, 36(5), 529-538. https://doi.org/10.1046/j.1365-2621.2001.00483.x
Li, C., Dhital, S., Gilbert, R. G., & Gidley, M. J. (2020). High-amylose wheat starch: Structural basis for water absorption and pasting properties. Carbohydrate polymers, 245, 116557. https://doi.org/10.1016/j.carbpol.2020.116557
Loan, L. T. K., Tat, T. Q., Minh, P. D. T., Thao, V. T. T., Hoang, P. T. M., Nhi, T. T. Y., Giang, B. L., Phat, D. T., & Tai, N. V. (2024). Prediction of the Germination Rate and Antioxidant Properties of VD20 Rice by Utilizing Artificial Neural Network-Coupled Response Surface Methodology and Product Characterization. Journal of Food Measurement and Characterization. https://doi.org/10.1007/s11694-024-02835-w
Loan, L. T. K., Thuy, N. M., & Van Tai, N. (2023). Mathematical and artificial neural network modeling of hot air drying kinetics of instant “Cẩm” brown rice. Food Science and Technology, 43, e27623. https://doi.org/10.5327/fst.27623
Martynenko, A., & Misra, N. N. (2020). Machine learning in drying. Drying Technology, 38(5-6), 596-609. https://doi.org/10.1080/07373937.2019.1690502
Meng, L., Sun, X., Zhang, Y., & Tang, X. (2024). Effects of high temperature and high relative humidity drying on moisture distribution, starch microstructure and cooking characteristics of extruded whole buckwheat noodles. Journal of Future Foods, 4(2), 159-166. https://doi.org/10.1016/j.jfutfo.2023.06.007
Multari, S., Marsol-Vall, A., Keskitalo, M., Yang, B., & Suomela, J.-P. (2018). Effects of different drying temperatures on the content of phenolic compounds and carotenoids in quinoa seeds (Chenopodium quinoa) from Finland. Journal of Food Composition and Analysis, 72, 75-82. https://doi.org/10.1016/j.jfca.2018.06.008
Önal, B., Adiletta, G., Crescitelli, A., Di Matteo, M., & Russo, P. (2019). Optimization of hot air drying temperature combined with pre-treatment to improve physico-chemical and nutritional quality of ‘Annurca’ apple. Food and Bioproducts Processing, 115, 87-99. https://doi.org/10.1016/j.fbp.2019.03.002
Pavkov, I., Radojčin, M., Stamenković, Z., Kešelj, K., Tylewicz, U., Sipos, P., Ponjičan, O., & Sedlar, A. (2021). Effects of osmotic dehydration on the hot air drying of apricot halves: Drying kinetics, mass transfer, and shrinkage. Processes, 9(2), 202. https://doi.org/10.3390/pr9020202
Randriamiarintsoa, N., Ryser, E. T., & Marks, B. P. (2024). Effect of Air Temperature and Velocity on Listeria monocytogenes Inactivation During Drying of Apple Slices. Journal of Food Protection, 87(4), 100253. https://doi.org/10.1016/j.jfp.2024.100253
Rasooli Sharabiani, V., Kaveh, M., Abdi, R., Szymanek, M., & Tanaś, W. (2021). Estimation of moisture ratio for apple drying by convective and microwave methods using artificial neural network modeling. Scientific Reports, 11(1), 9155. https://doi.org/10.1038/s41598-021-88270-z
Rewthong, O., Soponronnarit, S., Taechapairoj, C., Tungtrakul, P., & Prachayawarakorn, S. (2011). Effects of cooking, drying and pretreatment methods on texture and starch digestibility of instant rice. Journal of Food Engineering, 103(3), 258-264. https://doi.org/10.1016/j.jfoodeng.2010.10.022
Rodríguez‐Arzuaga, M., Ríos, G., & Piagentini, A. M. (2019). Mild heat treatments before minimal processing reduce browning susceptibility and increase total phenolic content of low‐chill apple cultivars. Journal of Food Processing and Preservation, 43(11), e14209. https://doi.org/10.1111/jfpp.14209
Selvi, K. Ç., Alkhaled, A. Y., & Yıldız, T. (2022). Application of Artificial Neural Network for Predicting the Drying Kinetics and Chemical Attributes of Linden (Tilia platyphyllos Scop.) during the Infrared Drying Process. Processes, 10(10), 2069. https://doi.org/10.3390/pr10102069
Sharma, S., Semwal, A. D., Srihari, S. P., Govind Raj, T., & Wadikar, D. (2024). Effect of salt pretreatments on physico-chemical, cooking and rehydration kinetics of instant rice. Journal of Food Science and Technology, 61(4), 770-781. https://doi.org/10.1007/s13197-023-05877-y
Shen, S., Wang, Y., Li, M., Xu, F., Chai, L., & Bao, J. (2015). The effect of anaerobic treatment on polyphenols, antioxidant properties, tocols and free amino acids in white, red, and black germinated rice (Oryza sativa L.). Journal of Functional Foods, 19, 641-648. https://doi.org/10.1016/j.jff.2015.09.057
Simal, S., Femenia, A., Garau, M., & Rosselló, C. (2005). Use of exponential, Page's and diffusional models to simulate the drying kinetics of kiwi fruit. Journal of Food Engineering, 66(3), 323-328. https://doi.org/10.1016/j.jfoodeng.2004.03.025
Vu, N. D., Tran, N. T. Y., Le, T. D., Phan, N. T. M., Doan, P. L. A., Huynh, L. B., & Dao, P. T. (2022). Kinetic Model of Moisture Loss and Polyphenol Degradation during Heat Pump Drying of Soursop Fruit (Annona muricata L.). Processes, 10(10), 2082. https://doi.org/10.3390/pr10102082
Yadav, G. P., Kumar, D., Dalbhagat, C. G., & Mishra, H. N. (2024). A Comprehensive Review on Instant rice: Preparation Methodology, Characterization, and Quality Attributes. Food Chemistry Advances, 4, 100581.
Yu, L., Turner, M., Fitzgerald, M., Stokes, J., & Witt, T. (2017). Review of the effects of different processing technologies on cooked and convenience rice quality. Trends in food science & technology, 59, 124-138. https://doi.org/10.1016/j.tifs.2016.11.009
|