- Ahuactzin-Pérez, M., Tlecuitl-Beristain, S., García-Dávila, J., González-Pérez, M., Gutiérrez-Ruíz, M.C. and Sánchez, C. (2016). Degradation of di(2-ethyl hexyl) phthalate by Fusarium culmorum : Kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modelingpathway based on quantum chemical modeling. Science of The Total Environment 566-567, 1186-1193. https://doi.org/10.1016/j.scitotenv.2016.05.169
- Al-Hawash, A.B., Zhang, J., Li, S., Liu, J., Ghalib, H.B., Zhang, X. and Ma, F. (2018a). Biodegradation of n-hexadecane by Aspergillus sp. RFC-1 and its mechanism. Ecotoxicology and Environmental Safety 164, 398-408. https://doi.org/10.1016/j.ecoenv.2018.08.049
- Arregui, L., Ayala, M., Gómez-Gil, X., Gutiérrez-Soto, G., Hernández-Luna, C.E., De Los Santos, M., Levin, L., Roja-Domínguez, A., Romero-Martínez, D., Saparrat, M.C.N., Trujillo-Roldán, M.A., and Valdez-Cruz, N.A. (2019). Laccases: structure, function, and potential application in water bioremediation. Microbial Cell Factories, 18, 1-33. https://doi.org/10.1186/s12934-019-1248-0
- Atakpa, O.E., Zhou, H., Jiang, L., Ma, Y., Liang, Y., Li, Y., Zhang, D. and Zhang, C. (2022). Improved degradation of petroleum hydrocarbons by co-culture of fungi and biosurfactant-producing bacteria. Chemosphere 290, 1-10. https://doi.org/10.1016/j.chemosphere.2021.133337
- Barrios San Martín, Y. (2011). Biorremediación: una herramienta para el saneamiento de ecosistemas marinos contaminados con petróleo. Biotecnología Aplicada 28, 60-68.
- Benguenab, A. and Chibani, A. (2021). Biodegradation of petroleum hydrocarbons by filamentous fungi (Aspergillus ustus and Purpureocillium lilacinum) isolated from used engine oil contaminated soil. Acta Ecologica Sinica 41, 416-423. https://doi.org/10.1016/j.chnaes.2020.10.008
- Binazadeh, M., Li, Z., Karimi, I.A. (2020). Optimization of biodegradation of long chain n- Alkanes by Rhodococcus sp. Moj-3449 using response surface methodology. Physical Chemistry Research 8, 45-59. https://doi.org/10.22036/pcr.2019.204077.1682
- Cáceres-Zambrano, J.Z., Rodríguez-Córdova, L.A., Sáez-Navarrete, C.A. and Coca Rives Y. (2024). Biodegradation capabilities of filamentous fungi in high-concentration heavy crude oil environments. Archives of Microbiology 206, 123. https://doi.org/10.1007/s00203-024-03835-6
- Canul-Chan, M., Rodas-Junco, B.A., Uribe-Riestra, E. and Houbron, E. (2023). Biodegradation of crude oil present in wastewaters: evaluation of biosurfactant production and catechol 2,3 dioxygenase activity. Revista Mexicana de Ingeniería Química 22, 1-9. https://doi.org/10.24275/rmiq/Bio2932
- Czarny, J., Staninska-Pieta, J., Piotrowska-Cyplik, A., Juzwa, W., Wolniewicz, A., Marecik, R., Ławniczak, Ł. and Chrzanowski, Ł. (2020). Acinetobacter sp. as the key player in diesel oil degrading community exposed to PAHs and heavy metals. Journal of Hazardous Materials 383, 1-10. https://doi.org/10.1016/j.jhazmat.2019.121168
- EL-Hanafy, A.A.-E.-M., Anwar, Y., Sabir, J.S., Mohamed, S.A., Al-Garni, S.M., Zinadah, O.A.A. and Ahmed, M.M. (2016). Characterization of native fungi responsible for degrading crude oil from the coastal area of Yanbu, Saudi Arabia. Biotechnology & Biotechnological Equipment 31, 105-111. http://doi.org/10.1080/13102818.2016.1249407
- Espinosa-Ortiz, E.J., Rene, E.R., and Gerlach, R. (2021). Potential use of fungi-bacterial co-cultures for the removal of organic pollutants. Critical Reviews in Biotechnology 42, 361-383. https://doi.org/10.1080/07388551.2021.1940831
- Environmental Protection Agency (EPA). (1998). Method 9071B n-hexane extractable material (hem) for sludge, sediment, and solid samples. Environmental Protection Agency (EPA) 1-13.
- Farrington, J.W. (2014). Oil Pollution in the Marine Environment II: Fates and Effects of Oil Spills. Environment: Science and Policy for Sustainable Development 56, 16-31. http://dx.doi.org/10.1080/00139157.2014.922382
- Jha, A., Barsola, B., Pathania, D., Sonu, Raizada, P., Thakur, Singh, P., Rustagi, S., Khosla, A., and Chaudhary, V. (2024). Nano-biogenic heavy metals adsorptive remediation for enhanced soil health and sustainable agricultural production. Environmental Research 252, 1-18. https://doi.org/10.1016/j.envres.2024.118926
- Hkiri, N., Olicón-Hernández, D.R., Pozo, C., Chouchani, C., Asses, N. and Aranda, E. (2023). Simultaneous heavy metal-polycyclic aromatic hydrocarbon removal by native tunisian fungal species. Journal of Fungi 9, 299. https://doi.org/10.3390/jof9030299
- Kebria, D.Y., Khodadadi, A., Ganjidoust, H., Badkoubi, A. and Amoozegar, M.A. (2009). Isolation and characterization of a novel native Bacillus strain capable of degrading diesel fuel. International Journal of Environmental Science & Technology 6, 435-442. https://doi.org/10.1007/bf03326082
- Khan, S., Nadir, S., Shah, Z. U., Shah, A.A., Karunarathna, S.C., Xu, J., Khan, A., Munir, S and Hasan, F. (2017). Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environmental Pollution 225, 469-480. http://dx.doi.org/10.1016/j.envpol.2017.03.012
- Khandelwal, A., Singh, S.B., Sharma, A., Nain, L., Varghese, E. and Singh, N. (2021). Effect of surfactant on degradation of Aspergillus sp. and Trichoderma sp. mediated crude oil. International Journal of Environmental Analytical Chemistry 103, 1667-1680. https://doi.org/10.1080/03067319.2021.1879800
- Kunitz, M. (1946). Crystalline soybean trypsin inhibitor. The Journal of General Physiology 29, 149-154. https://doi.org/10.1085/jgp.29.3.149
- Lowry, O., Rosebrough, N., Farr, A.L. and Randall, R. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265-275. https://doi.org/10.1016/s0021-9258(19)52451-6
- Lu, M., Zhang, Z., Sun, S., Wang, Q. and Zhong, W. (2009). Enhanced degradation of bioremediation residues in petroleum-contaminated soil using a two-liquid-phase bioslurry reactor. Chemosphere 77, 161-168. http://dx.doi.org/10.1016/j.chemosphere.2009.08.001
- Mahjoubi, M., Jaouani, A., Guesmi, A., Ben Amor, S., Jouini, A., Cherif, H., Najjari, A., Boudabous, A., Koubaa, N and Cherif, A. (2013). Hydrocarbonoclastic bacteria isolated from petroleum contaminated sites in Tunisia: isolation, identification and characterization of the biotechnological potential. New Biotechnology 30, 723-733. http://dx.doi.org/10.1016/j.nbt.2013.03.004
- Menezes Bento, F., de Oliveira Camargo, F.A., Okeke, B.C. and Frankenberger, W.T. (2005). Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiological Research 160, 249-255. https://doi.org/10.1016/j.micres.2004.08.005
- Mishra, S. and Singh, S.N. (2012). Microbial degradation of n-hexadecane in mineral salt medium as mediated by degradative enzymes. Bioresource Technology 111, 148-154. http://dx.doi.org/10.1016/j.biortech.2012.02.049
- Nadumane, V.K., Venkatachalam, P. and Gajaraj, B. (2016). Aspergillus Applications in Cancer Research. In: New and Future Developments in Microbial Biotechnology and Bioengineering. (V.K. Nadumane, P. Venkatachalam and B, Gajaraj, eds.), Pp. 243-255. Elsevier, India. https://doi.org/10.1016/b978-0-444-63505-1.00020-8
- Perera, M., Wijesundera, S., Wijayarathna C.D., Seneviratne, G. and Jayasena, S. (2019). Identification of long-chain alkane-degrading (LadA) monooxygenases in Aspergillus flavus via in silico analyses. Frontiers in Microbiology 13, 1-14. https://doi.org/10.3389/fmicb.2022.898456
- Pérez-Montiel, G., Torres-García, J.L., Juarez-Santacruz, L., Cortés-Espinosa, D.V., Rubio-Piña, J. and Ahuactzin-Pérez, M. (2021). Crecimiento y producción de enzimas lacasas de Pleurotus ostreatus durante el proceso de degradación de bisfenol a. Biotecnia, 23, 39-46. https://doi.org/10.18633/biotecnia.v23i2.1357
- Santos, E.O., Rosa, C.F.C., Passos, C.T., Sanzo, A.V.L., Burkert, J.F.M., Kalil, SJ. and Burkert, G.A.V. (2008). Pre-screening of filamentous fungi isolated from a contaminated site in Southern Brazil for bioaugmentation purposes. African Journal of Biotechnology 7, 1314-1317.
- Sayed, K., Baloo, L. and Kumar S., N. (2021). Bioremediation of total petroleum hydrocarbons (TPH) by bioaugmentation and biostimulation in water with floating oil spill containment booms as bioreactor basin. International Journal of Environment Research and Public Health 18, 1-26. https://dx.doi.org/10.3390/ijerph18052226
- Sharma, A., Singh, S.B., Sharma, R., Chaudhary, P., Pandey, A.K., Ansari, R., Vasudevana, V., Arora, A., Singh, S., Saha, S. and Nain, L. (2016). Enhanced biodegradation of PAHs by microbial consortium with different amendment and their fate in-situ condition. Journal of Environmental Management 181, 728736. https://doi.org/10.1016/j.jenvman.2016.08.024
- Ye, J.-S., Yin, H., Qiang, J., Peng, H., Qin, H.-M., Zhang, N. and He, B.-Y. (2011). Biodegradation of anthracene by Aspergillus fumigatus. Journal of Hazardous Materials 85, 174-181. https://doi.org/10.1016/j.jhazmat.2010.09.015
- Youssef, N.H., Duncan, K.E., Nagle, D.P., Savage, K.N., Knapp, R.M. and McInerney, M.J. (2004). Comparison of methods to detect biosurfactant production by diverse microorganisms. Journal of Microbiological Methods 56, 339-347. https://doi.org/10.1016/j.mimet.2003.11.001
- Yuniati, M.D. (2018). Bioremediation of petroleum-contaminated soil: a review. IOP Conference Series: Earth and Environmental Science 118, 1-8. https://doi.org/10.1088/1755-1315/118/1/012063
- Zhang, B., Matchinski, E. J., Chen, B., Ye, X., Jing, L. and Lee, K. (2019). World Seas: An Environmental Evaluation. In: Marine Oil Spills-Oil Pollution, Sources and Effects. (B. Zhang, E. J. Matchinski, B. Chen, X. Ye, L. Jing and K. Lee, eds.), Pp. 391-406. https://dx.doi.org/10.1016/b978-0-12-805052-1.00024-3
- Zhang, J.-H., Xue, Q.-H., Gao, H., Ma, X. and Wang, P. (2015). Degradation of crude oil by fungal enzyme preparations from Aspergillus spp. for potential use in enhanced oil recovery. Journal of Chemical Technology & Biotechnology 91, 865-875. https://doi.org/10.1002/jctb.4650
|