Vol. 24, No. 1 (2025), Bio24366 https://doi.org/10.24275/rmiq/Bio24366


A kinetic dynamic model of a photobioreactor in batch operation for production as biofertilizer


 

Authors

M.I. Sánchez-Contreras, R.I. Beltrán-Hernández, C.A. Lucho-Constantino, P.A. López-Pérez


Abstract

A native microbial consortium (MC) was isolated and propagated in BG11 and BG110 media to promote the growth of microalgae and cyanobacteria, respectively. Biomass, chlorophyll a, ammonium, light intensity, and dissolved oxygen were monitored during MC growth in a batch photobioreactor system. The MC highlighted the high production of chlorophyll-a (11.2 mg L-1) in BG11 and the potential as a biofertilizer because of its ammonium concentration (1.1-1.9 mg L-1) in both media. An unstructured phenomenological kinetic model was developed by incorporating reaction rates in the photobioreactor for the state variables experimentally monitored. The kinetic model parameters were evaluated using the Marquardt-Levenberg algorithm, which is a nonlinear least square fitting method. The statistical evaluation of the model's effectiveness was performed using dimensionless efficiency coefficients and relative standard deviations. A global sensitivity analysis determined that the light intensity and specific oxygen consumption rate directly influenced the system. The proposed model is robust and suitable for optimization in laboratory-scale photobioreactors because it can represent the hydrodynamics parameter as kLa and the illumination area-operational volume of the photobioreactor, which is an advantage over current models for this type of system.


Keywords

Ammonium ion concentration batch culture, Monte Carlo method, mass transfer coefficient, Zea mays, microbial consortium.


References

  • Alvarado-Santos, E., Aguilar-López, R., Neria-González, M.I., Romero-Cortés, T., Robles-Olvera, V.J., and López-Pérez, P.A. (2023). A novel kinetic model for a cocoa waste fermentation to ethanol reaction and its experimental validation. Preparative Biochemistry and Biotechnology, 53(2), 167-182. https://doi.org/10.1080/10826068.2022.2056746
  • Alvarado-Santos, E., Mata-Machuca, J.L., López-Pérez, P.A., Garrido-Moctezuma, R.A., Pérez-Guevara, F., and Aguilar-López, R. (2022). Comparative analysis of a family of sliding mode observers under real-time conditions for the monitoring in the bioethanol production. Fermentation, 8(9), 446. https://doi.org/10.3390/fermentation8090446
  • American Public Health Association (1992). American Water Works Association, and Water Environment Federation. 8110 In Standard Methods for the Examination of Water and Wastewater. Lipps, W.C.; Baxter, T.E.; Braun-Howland, E. (Eds.) APHA Press.
  • American Public Health Association (1992). American Water Works Association, and Water Environment Federation. 4500-NH3 nitrogen (ammonia), In Standard Methods for the Examination of Water and Wastewater. Lipps, W.C.; Baxter, T.E.; Braun-Howland, E. (Eds.) APHA Press.
  • Béchet, Q., Shilton, A., and Guieysse, B. (2013). Modeling the effects of light and temperature on algae growth: state of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnology Advances, 31(8), 1648-1663. https://doi.org/10.1016/j.biotechadv.2013.08.014
  • Becker, W.E., Tarantola, S., and Deman, G. (2018). Sensitivity analysis approaches to high-dimensional screening problems at low sample size. Journal of Statistical Computation and Simulation, 88(11), 2089-2110. https://doi.org/0.1080/00949655.2018.1450876
  • Bekirogullari, M., Figueroa-Torres, G.M., Pittman, J.K., and Theodoropoulos, C. (2020). Models of microalgal cultivation for added-value products-A review. Biotechnology Advances, 44, 107609. https://doi.org/10.1016/j.biotechadv.2020.107609
  • Cappello, V., Scale-up of gas-liquid agitated bioreactors Three-dimensional modeling of hydrodynamics, mass transfer and kinetics. Chemical and Process Engineering. Université Clermont Auvergne, 2020.
  • Carletti, M., Barbera, E., Filippini, F., and Sforza, E. (2024). Effect of ammonium/nitrate ratio on microalgae continuous cultures: Species-specificity of nutrient uptake and modelling perspectives. Journal of Water Process Engineering,58, 104762. https://doi.org/10.1016/j.jwpe.2023.104762
  • Cornet, J. F., and Dussap, C. G. (2009). A simple and reliable formula for assessment of maximum volumetric productivities in photobioreactors. Biotechnology Progress, 25(2), 424-435. https://doi.org/10.1002/btpr.138
  • Díaz-Godínez, G. Peña-Solis, K., and Díaz-Domínguez, G. (2024). Algae as nutritional and bioactive food ingredients. Revista Mexicana de Ingeniería Química 23, Bio24209 https://doi.org/10.24275/rmiq/Bio24209
  • Dineshkumar, R., Kumaravel, R., Gopalsamy, J., Azim, S. N. M. and Sampathkumar, P. (2018). Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste Biomass Valor 9, 793-800. https://doi.org/10.1007/S12649-017-9873-5.
  • Dobrojan, S., Jigău, G., and Dobrojan, G. (2023). Nitrogen fixing cyanobacteria-regulators of nitrogen content. Present Environment and Sustainable Development, (1), 48-50.
  • Gasparyan, M., Van Messem, A., and Rao, S. (2020). An Automated Model Reduction Method for Biochemical Reaction Networks. Symmetry, 12, 1321. https://doi.org/10.3390/sym12081321
  • Grobbelaar, J.U. (2013) Inorganic Algal Nutrition. In Handbook of Microalgal Culture: Applied Phycology and Biotechnology. Hu, Q.; Richmond, A. (Eds.) Wiley Blackwell. 123-133. https://doi.org/10.1002/9781118567166
  • Guedes, V.C., Palma, G.M., and Horta, A.C.L. (2023). An evaluation of light wavelengths, intensity and control for the production of microalgae in photobioreactors: a review. Brazilian Journal of Chemical Engineering, 1-14. https://doi.org/10.1007/s43153-023-00388-x
  • Hernández-Melchor, D.J., Cañizares-Villanueva, R.O., Terán-Toledo, J.R., López-Pérez P.A., and Cristiani-Urbina, E. (2017). Hydrodynamic and mass transfer characterization of flat-panel airlift photobioreactors for the cultivation of a photosynthetic microbial consortium. Biochemical Engineering Journal, 128, 141-148. https://doi.org/10.1016/j.bej.2017.09.014
  • Ifrim, G. A., Titica, M., Horincar, G., Antache, A., Baicu, L., Barbu, M., and Guzmán, J.L. (2022). Model based optimal control of the photosynthetic growth of microalgae in a batch photobioreactor. Energies, 15(18), 6535. https://doi.org/10.3390/en15186535
  • Jiménez-Ríos, L., Torrado, A., González-Pimentel, J. L., Iniesta-Pallarés, M., Molina-Heredia, F. P., Mariscal, V., and Álvarez, C. (2024). Emerging nitrogen-fixing cyanobacteria for sustainable cotton cultivation. Science of the Total Environment,924, 171533. https://doi.org/10.1016/j.scitotenv.2024.171533
  • Kaneko, K. (2024). Constructing universal phenomenology for biological cellular systems: an idiosyncratic review on evolutionary dimensional reduction. Journal of Statistical Mechanics: Theory and Experiment, (2), 024002.https://doi.org/10.1088/1742-5468/ad1f54
  • Kazbar, A., Cogne, G., Urbain, B., Marec, H., Le-Gouic, B., Tallec, J., and Pruvost, J. (2019). Effect of dissolved oxygen concentration on microalgal culture in photobioreactors.  Algal Research, 39, 101432. https://doi.org/10.1016/j.algal.2019.101432
  • Koller, A.P., Löwe, H., Schmid, V., Mundt, S., and Weuster‐Botz, D. (2017). Model‐supported phototrophic growth studies with Scenedesmus obtusiusculus in a flat‐plate photobioreactor. Biotechnology and Bioengineering, 114(2), 308-320. https://doi.org/10.1002/bit.26072
  • Koutra, E., Economou, C. N., Tsafrakidou, P., and Kornaros, M. (2018). Bio-based products from microalgae cultivated in digestates. Trends in Biotechnology, 36(8), 819-833. https://doi.org/10.1016/j.tibtech.2018.02.015
  • Lee, E., Jalalizadeh, M., and Zhang, Q. (2015) Growth kinetic models for microalgae cultivation: A review. Algal Research, 12, 497-512. https://doi.org/10.1016/j.algal.2015.10.004.
  • Lee, S. K.; Lur, H. S.; Liu, C.-T. (2021) From lab to farm: elucidating the beneficial roles of photosynthetic bacteria in sustainable agriculture. Microorganisms, 9, 2453. https://doi.org/10.3390/microorganisms9122453
  • Lee, Y., Chen, W., Shen, H., Han, D., Li, Y., Jones, H.D.T., TimLin, J.A. and  Hu, Q.  (2013). Basic culturing and analytical measurement techniques. In Handbook of Microalgal Culture: Applied Phycology and Biotechnology. Hu, Q.; Richmond A.  (Eds.) Wiley Blackwell.,  37-68. https://doi.org/10.1002/9781118567166.ch3
  • Legrand, J., Artu, A., and Pruvost, J. (2021). A review on photobioreactor design and modelling for microalgae production. Reaction Chemistry & Engineering. https://doi.org/10.1039/d0re00450b
  • Li, J., Tosino, H.S., Ladewig, B.P., Jung, N., Bräse, S., and Dittmeyer, R. (2024). Extraction of the intrinsic rate constant for a photocyclization reaction in capillary microreactors using a simplified reactor model. Reaction Chemistry & Engineering. https://doi.org/10.1039/D4RE00087K
  • Lindemann, S., Bernstein, H., and Song, H.S. (2016).  Engineering microbial consortia for controllable outputs. ISME J 10, 2077–2084 https://doi.org/10.1038/ismej.2016.26
  • López-Pérez, P., López-López, M., Núñez-Colín, C., Mukhtar, H., Aguilar-López, R. and Peña-Caballero, V. (2023). A novel nonlinear sliding mode observer to estimate biomass for lactic acid production. Chemical Product and Process Modeling, 18(4), 565-580. https://doi.org/10.1515/cppm-2021-0074
  • López-Pérez, P.A., Puebla, H., Velázquez S.H.I., and Aguilar-López, R. (2016). Comparison tools for parametric identification of kinetic model for ethanol production using evolutionary optimization approach. International Journal of Chemical Reactor Engineering, 14(6), 1201-1209. https://doi.org/10.1515/ijcre-2016-0045
  • Martínez-Hilario, D.G. Carrasco-Venegas, L.A., González-Fernández, J.V., Soto-Gonzales, J.L. and Carranza-Oropeza M.V. (2023). Modeling NPK nutrients release via nanoparticle/hydrogel system. Revista Mexicana de Ingeniería Química, 22 (2), Sim2399. https://doi.org/10.24275/rmiq/Sim2399
  • Pandey, S., Narayanan, I., Vinayagam, R., Selvaraj, R., Varadavenkatesan, T., and Pugazhendhi, A. (2023). A review on the effect of blue green 11 medium and its constituents on microalgal growth and lipid production. Journal Environmental Chemistry Engineering. 11(3), 109984. https://doi.org/10.1016/j.jece.2023.109984
  • Povis, A.A.L., Pérez, E.A.S., Quispe, K.A.O., and Yanqui, P.V.G. (2024). Effect of dissolved oxygen concentration on biomass production in wastewater. Ambiente e Agua-An Interdisciplinary Journal of Applied Science, 19, 1-11. https://doi.org/10.4136/ambi-agua.2937
  • Rahimikhoob, H., Sohrabi, T., and Delshad, M. (2024). Variance-based global sensitivity analysis and uncertainty quantification of the AquaCrop model parameters for basil (Ocimum basilicum L.) under different nitrogen fertilizer rates. Journal of Plant Nutrition, 47(4), 628-645. https://doi.org/10.1080/01904167.2023.2280142
  • Ramírez-López, C., Esparza-García, F.J., Ferrera-Cerrato, R., Alarcón, A., and Cañizares-Villanueva, R.O. (2019). Short-term effects of a photosynthetic microbial consortium and nitrogen fertilization on soil chemical properties, growth, and yield of wheat under greenhouse conditions. Journal of Applied Phycology, 31, 3617–3624. https://doi.org/10.1007/s10811-019-01861-2  
  • Rao, S., Van der Schaft, A., Van Eunen, K., Bakker, B. M., and Jayawardhana, B. (2014) A model reduction method for biochemical reaction networks. BMC Systems Biology 8, 5 https://doi.org/10.1186/1752-0509-8-52
  • Rodriguez-Mata A.E., Medrano-Hermosillo J.A., Gonzalez-Huitnro, V. Djilali,A. L. Lopez-Perez, P.A., and Sonck.A. (2024). Adaptive sliding mode control of a bioreactor via nutrients variable control using a diffeomorphism.Revista Mexicana de Ingeniería Química, 23(3), Sim24296 23(3), https://doi.org/10.24275/rmiq/Sim24296
  • Raven, J.A. (2012). Carbon. In: Whitton, B. (Eds) Ecology of Cyanobacteria II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3855-3_17
  • Renuka, N., Guldhe, A., Prasanna, R., Singh, P., and Bux, F. (2018). Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnology Advances, 36(4), 1255-1273. https://doi.org/10.1016/j.biotechadv.2018.04.004.
  • Reyna-Velarde, R., Cristiani-Urbina, E., Hernández-Melchor, D.J., Thalasso, F., and Cañizares-Villanueva, R.O. (2010). Hydrodynamic and mass transfer characterization of a flat-panel airlift photobioreactor with high light path. Chemical Engineering and Processing: Process Intensification, 49(1), 97-103. https://doi.org/10.1016/j.cep.2009.11.014
  • Romero C.T., Cuervo-Parra, J.A., Robles-Olvera, J.V., Rangel C.E., and López-Pérez, P.A. (2018). Experimental and kinetic production of ethanol using mucilage juice residues from cocoa processing. International Journal of Chemical Reactor Engineering, 16(11), 20170262. https://doi.org/10.1515/ijcre-2017-0262
  • Sánchez-Zurano, A., Rodríguez-Miranda, E., Guzmán, J.L., Acién-Fernández F.G., Fernández-Sevilla J.M., and Molina Grima E. (2021). ABACO: A new model of microalgae-bacteria consortia for biological treatment of wastewaters. Applied Sciences. 11(3):998. https://doi.org/10.3390/app11030998
  • Schediwy, K., Trautmann, A., Steinweg, C., and Posten, C. (2019). Microalgal kinetics a guideline for photobioreactor design and process development. Engineering in Life Sciences, 19, 830-843. https://doi.org/10.1002/elsc.201900107
  • Scheufele, F.B., Hinterholz, C.L., Zaharieva, M.M., Najdenski, H.M., Módenes, A.N., Trigueros, D.E.G., Borba, C.E., Espinoza-Quiñones, F.R., and Kroumov, A.D. (2018). Complex mathematical analysis of photobioreactor system. Engineering in Life Sciences 19, 844-859. https://doi.org/10.1002/elsc.201800044
  • Silva, F., Nadais, H, Prates, A., Arroja, L. and Capela, I. (2009). Modelling of anaerobic treatment of evaporator condensate (EC) from a sulphite pulp mill using the IWA anaerobic digestion model no. 1 (ADM1), Chemical Engineering Journal, 148, 2–3. https://doi.org/10.1016/j.cej.2008.09.002
  • Solimeno, A., Samsó, R., Uggetti, E., Sialve, B., Steyer, J. P., Gabarró, A., and García, J. (2015). New mechanistic model to simulate microalgae growth, Algal Research 12, 350-358. https://doi.org/10.1016/j.algal.2015.09.008
  • Song H. S. (2018). Design Principles of Microbial Communities: From Understanding to Engineering. Current Genomics 19:699–700
  • Song H. S., Cannon W. R., Beliaev A. S., and Konopka A. (2014). Mathematical modeling of microbial community dynamics: a methodological review. Processes 2:711–752. https://doi.org/10.3390/pr2040711
  • Song H., Lee N., Kessell A. K., McCullough H. C., Park S., Zhou K., Lee D. (2024). Kinetics-based inference of environment-dependent microbial interactions and their dynamic variation. mSystems 9: e01305-23. https://doi.org/10.1128/msystems.01305-23
  • Tredici M. R. (2004). Mass production of microalgae: photobioreactors. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Richmond, A. (Ed.)  Blackwell Science Ltd. Oxford.178-214. https://doi.org/10.1002/9781118567166
  • Touloupakis, E., Zittelli, G.C., and Benavides, A.M.S. (2023). Growth and photosynthetic performance of Nostoc linckia (formerly N. calcicola) cells grown in BG11 and BG110 media. Photochemical and Photobiological Sciencies, 22, 795–807 https://doi.org/10.1007/s43630-022-00353-6