Vol. 24, No. 1 (2025), Bio25388 https://doi.org/10.24275/rmiq/Bio25388
|
Effect of temperature on the kinetics of the enzymatic esterification of n-3 polyunsaturated fatty acids and glycerol |
|
|
AuthorsC. Correa-Leyva, M. Pérez-Tello, A.R. Martin-Garcia1, H.S. García, J.A. Noriega-Rodríguez AbstractIn this work, the effect of temperature on the kinetics of esterification of polyunsaturated fatty acids (PUFA) and glycerol catalyzed by Candida antarctica lipase was studied for the production of structured acylglycerols in a batch reactor. A concentrate of n-3 PUFA was prepared by chemical hydrolysis of Menhaden oil followed by urea precipitation. Experiments were conducted at 40, 50, and 60°C using the stoichiometric ratio of 3 mol of PUFA per mol of glycerol. At 60°C the overall esterification yield was 51.8%. The activation energy was estimated in 28.611 kJ mol-1. To describe the overall esterification kinetics, a Michaelis-Menten model with reversible effects was used. Esterification kinetics of the structured acylglycerols obeyed a kinetic model based on the ordered-sequential multi-product multi-substrate mechanism. The kinetic parameters of both models were obtained by a non-linear regression algorithm using the MATLAB® software (R2018b). The average coefficient of determination of the models was R_avg^2=0.93.
Keywordsacylglycerols, enzymatic esterification, kinetic parameters, n-3 PUFA. |
References |
|---|
Bisswanger, H. (2017). Enzyme Kinetics: Principles and Methods, John Wiley & Sons, Germany, pp. 80-82.Bornadel, A., Åkerman, C. O., Adlercreutz, P., Hatti-Kaul, R. & Borg, N. (2013). Kinetic modeling of lipase-catalyzed esterification reaction between oleic acid and trimethylolpropane: A simplified model for multi-substrate multi-product ping-pong mechanisms. Biotechnol. Prog. 29 (6), 1422–1429. https://doi.org/10.1002/btpr.1806Bousquet, M. P., Willemot, R. M., Monsan, P. & Boures, E. (2000). Enzymatic Synthesis of α-Butylglucoside Linoleate in a Packed Bed Reactor for Future Pilot Scale-up. Biotechnol. Prog. 16 (4), 589–594. https://doi.org/10.1021/bp000043
Castejón, N. & Señoráns, F. J. (2019). Strategies for Enzymatic Synthesis of Omega-3 Structured Triacylglycerols from Camelina sativa oil enriched in EPA and DHA. Eur. J. Lipid Sci. Technol. 121, 1800412. https://doi.org/10.1002/ejlt.201800412
Correa, C., Tejeda, A., Martin, A. R., García, H. S. & Noriega, J. A. (2017) Kinetics of the enzymatic esterification of n-3 polyunsaturated fatty acids to glycerol: multi-substrate multi-product ping-pong mechanism. Rev. Mex. Ing. Quim. 16 (3), 805-812. http://bit.ly/3lXH3SpDu, B., Zielinski, D. C., Kavvas, E. S., Dräger, A., Tan, J., Zhang, Z., Ruggiero, K., Arzumanyan, G. & Palsson, B. O. (2016). Evaluation of rate law approximations in bottom-up kinetic models of metabolism. BMC Syst. Biol. 10 (1), 1-15. https://doi.org/10.1186/s12918-016-0283-2González, J., Moreno, V. R. & del Monte, A. (2010). Lipases: enzymes having the potential for developing immobilised biocatalysts by interfacial adsorption. Rev. Colomb. Biotecnol. 12 (1), 113-140. http://bit.ly/3KtA3Hc
He, Y. & Shahidi, F. (1997). Enzymatic esterification of θ-3 fatty acid concentrates from seal blubber oil with glycerol. J Am Oil Chem Soc. 74 (9), 1133–1136. https://doi.org/10.1007/s11746-997-0036-x
Kołodziej, Ł., Czarny, P. L., Ziółkowska, S., Białek, K., Szemraj, J., Gałecki, P., Su, K. P. & Śliwiński, T. (2023). How fish consumption prevents the development of Major Depressive Disorder? A comprehensive review of the interplay between n-3 PUFAs, LTP and BDNF. Progress in Lipid Research, 101254. https://doi.org/10.1016/j.plipres.2023.101254
Noriega, J. A., Carrillo, E., Gamez, N., Medina, L. A., Baeza, R. & Garcia, H. S. (2013). Optimization of the lipase catalyzed production of structured acylglycerols with polyunsaturated fatty acids isolated from sardine oil. J. Food Res. 2 (6), 97. http://dx.doi.org/10.5539/jfr.v2n6p97Pino, F. J. & Noriega, J. A. (2011). Análisis de Clases de Lípidos por Cromatografía de Capa Fina de Alta Resolución. Revista Invurnus. 6 (2), 38-43.
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W., NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012, 9 (7), 671–675. doi: https://doi.org/10.1038/nmeth.2089
Valle, P. A., Salazar, Y., Soto-Cruz, N. O., Páez-Lerma, J. B., Coria, L. N., Núñez-Guerrero, M. E., Rodriguez-Herrera R. & Herrera, L. D. (2024) Modelling and analysis on the ethanol production by the Torulaspora delbrueckii yeast. Rev. Mex. Ing. Quim. 23 (3), 1-10. https://doi.org/10.24275/rmiq/Sim24312Von der Haar, D., Stäbler, A., Wichmann, R. & Schweiggert-Weisz, U. (2014). Enzymatic esterification of free fatty acids in vegetable oils utilizing different immobilized lipases. Biotechnol. Lett. 37 (1), 169–174. https://doi.org/10.1007/s10529-014-1668-1Watanabe, Y., Yamauchi-Sato, Y., Nagao, T., Negishi, S., Terai, T., Kobayashi, T. & Shimada, Y. (2005). Production of MAG of CLA by esterification with dehydration at ordinary temperature using Penicillium camembertii lipase. J. Am. Oil Chem. Soc. 82 (9), 619–623. https://doi.org/10.1007/s11746-005-1119-9Xie, D., Chen, Y., Yu, J., Yang, Z., Wang, X. & Wang, X. (2023). Progress in enrichment of n-3 polyunsaturated fatty acid: A review. Critical Reviews in Food Science and Nutrition, 63 (32), 11310-11326. https://doi.org/10.1080/10408398.2022.2086852Zhang, Y., Di, X., Wang, W., Song, M., Yu, Q., Wang, Z., Yuan, Z., Chen, X., Xu, H. & Guo, Y. (2020). Kinetic study of lipase-catalyzed esterification of furoic acid to methyl-2-furoate. Biochem. Eng. J. 161, 107587. https://doi.org/10.1016/j.bej.2020.107587
Zhu, Y., Feng, Y., Wang, J., Yuan, Z., Miao, Y., Miao, T., Gao, B. & Zhang, L. (2024). Selective Esterification Design of Lipases for TAG Synthesis Based on the Unique Structure of Curved DHA. ACS Food Science & Technology, 4 (7), 1722-1730. https://doi.org/10.1021/acsfoodscitech.4c00174 |