- Adnan, A., Koch, F. A., & Mavinic, D. S. (2015). Pilot-scale study of phosphorus recovery through struvite crystallization – II: Applying in-reactor supersaturation ratio as a process control parameter. Journal of Environmental Engineering and Science, 2(6), 473–483. https://doi.org/10.1139/S03-048
- Alewell, C., Ringeval, B., Ballabio, C., Robinson, D. A., Panagos, P., & Borrelli, P. (2020). Global phosphorus shortage will be aggravated by soil erosion. Nature Communications, 11(1), 1–12. https://doi.org/10.1038/s41467-020-18326-7
- Ali, M. I., & Schneider, P. A. (2008). An approach of estimating struvite growth kinetic incorporating thermodynamic and solution chemistry, kinetic and process description. Chemical Engineering Science, 63(13), 3514–3525. https://doi.org/10.1016/J.CES.2008.04.023
- Altınbas¸, M., Altınbas¸, A., Yangin, C., & Ozturk, I. (2002). Struvite precipitation from anaerobically treated municipal and landfill wastewaters. Water Science and Technology, 46(9), 271–278. https://doi.org/https://doi.org/10.2166/wst.2002.0257
- American Public Health Association, American Water Works Association, & Water Environment Federation. (2018). Standard methods for the examination of water and wastewater. American Public Health Association.
- Bhuiyan, M. I. H., Mavinic, D. S., & Koch, F. A. (2008). Phosphorus recovery from wastewater through struvite formation in fluidized bed reactors: a sustainable approach. Water Science and Technology, 57(2), 175–181. https://doi.org/10.2166/WST.2008.002
- Brown, K., Harrison, J., & Bowers, K. (2018). Struvite Precipitation from Anaerobically Digested Dairy Manure. Water, Air, and Soil Pollution, 229(7), 1–11. https://doi.org/10.1007/S11270-018-3855-5/METRICS
- Capdevielle, A., Sýkorová, E., Béline, F., & Daumer, M. L. (2014). Kinetics of struvite precipitation in synthetic biologically treated swine wastewaters. Environmental Technology, 35(10), 1250–1262. https://doi.org/10.1080/09593330.2013.865790
- Cárdenas-Medina, K. N., Fajardo-Ortiz, M. C., Schettino-Bermúdez, B. S., Meraz-Rodríguez, M. A., & Castilla-Hernández, P. (2020). Acidogenesis/methanogenesis from acid cheese whey in hybrid-UASB reactors. Revista Mexicana de Ingeniera Quimica, 19, 17–27. https://doi.org/10.24275/rmiq/IA1420
- Carpenter, S. R., & Bennett, E. M. (2011). Reconsideration of the planetary boundary for phosphorus. Environmental Research Letters, 6(1), 014009. https://doi.org/10.1088/1748-9326/6/1/014009
- Catone, C. M., Ripa, M., Geremia, E., & Ulgiati, S. (2021). Bio-products from algae-based biorefinery on wastewater: A review. Journal of Environmental Management, 293, 112792. https://doi.org/10.1016/J.JENVMAN.2021.112792
- Cervantes-Zepeda, A. I., Cruz-Colín, M. R., Aguilar-Corona, R., Castilla-Hernández, P., & Meraz-Rodríguez, M. (2011). Physicochemical and microbial characterization of the treated wastewater in a pilot scale UASB reactor. Revista Mexicana de Ingeniería Química, 10(1), 67–77. www.amidiq.com
- Degryse, F., Baird, R., da Silva, R. C., & McLaughlin, M. J. (2017). Dissolution rate and agronomic effectiveness of struvite fertilizers – effect of soil pH, granulation and base excess. Plant and Soil, 410(1–2), 139–152. https://doi.org/10.1007/s11104-016-2990-2
- Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van Der Bruggen, B., Verstraete, W., Rabaey, K., & Meesschaert, B. (2015). Global Phosphorus Scarcity and Full-Scale P-Recovery Techniques: A Review. Critical Reviews in Environmental Science and Technology, 45(4), 336–384. https://doi.org/10.1080/10643389.2013.866531
- Di Iaconi, C., Pagano, M., Ramadori, R., & Lopez, A. (2010). Nitrogen recovery from a stabilized municipal landfill leachate. Bioresource Technology, 101(6), 1732–1736. https://doi.org/10.1016/J.BIORTECH.2009.10.013
- Guadie, A., Xia, S., Jiang, W., Zhou, L., Zhang, Z., Hermanowicz, S. W., Xu, X., & Shen, S. (2014). Enhanced struvite recovery from wastewater using a novel cone-inserted fluidized bed reactor. Journal of Environmental Sciences, 26(4), 765–774. https://doi.org/10.1016/S1001-0742(13)60469-6
- Huang, H., Mavinic, D. S., Lo, K. V., & Koch, F. A. (2006a). Production and Basic Morphology of Struvite Crystals from a Pilot-Scale Crystallization Process. Environmental Technology, 27(3), 233–245. https://doi.org/10.1080/09593332708618637
- Huang, H., Mavinic, D. S., Lo, K. V., & Koch, F. A. (2006b). Production and basic morphology of struvite crystals from a pilot-scale crystallization process. Environmental Technology, 27(3), 233–245. https://doi.org/10.1080/09593332708618637
- Huang, H., Zhang, D. D., Li, J., Guo, G., & Tang, S. (2017). Phosphate recovery from swine wastewater using plant ash in chemical crystallization. Journal of Cleaner Production, 168, 338–345. https://doi.org/10.1016/J.JCLEPRO.2017.09.042
- Iqbal, M., Bhuiyan, H., & Mavinic, D. S. (2008). ASSESSING STRUVITE PRECIPITATION IN A PILOT‐SCALE FLUIDIZED BED CRYSTALLIZER. Environmental Technology, 29(11), 1157–1167. https://doi.org/10.1080/09593330802075452
- Jordaan, E. M., Rezania, B., & Ci̧çek, N. (2013). Investigation of chemical-free nutrient removal and recovery from CO2-rich wastewater. Water Science and Technology, 67(10), 2195–2201. https://doi.org/10.2166/WST.2013.116
- Kim, D., Ryu, H. D., Kim, M. S., Kim, J., & Lee, S. I. (2007). Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate. Journal of Hazardous Materials, 146(1–2), 81–85. https://doi.org/10.1016/J.JHAZMAT.2006.11.054
- Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review. Critical Reviews in Environmental Science and Technology, 39(6), 433–477. https://doi.org/10.1080/10643380701640573
- Li, X. Z., & Zhao, Q. L. (2003). Recovery of ammonium-nitrogen from landfill leachate as a multi-nutrient fertilizer. Ecological Engineering, 20(2), 171–181. https://doi.org/10.1016/S0925-8574(03)00012-0
- Mainardis, M., Buttazzoni, M., & Goi, D. (2020). Up-flow anaerobic sludge blanket (Uasb) technology for energy recovery: A review on state-of-the-art and recent technological advances. Bioengineering, 7(2). https://doi.org/10.3390/bioengineering7020043
- Moerman, W., Carballa, M., Vandekerckhove, A., Derycke, D., & Verstraete, W. (2009). Phosphate removal in agro-industry: Pilot- and full-scale operational considerations of struvite crystallization. Water Research, 43(7), 1887–1892. https://doi.org/10.1016/J.WATRES.2009.02.007
- Monballiu, A., Desmidt, E., Ghyselbrecht, K., & Meesschaert, B. (2018). Phosphate recovery as hydroxyapatite from nitrified UASB effluent at neutral pH in a CSTR. Journal of Environmental Chemical Engineering, 6(4), 4413–4422. https://doi.org/10.1016/J.JECE.2018.06.052
- Moragaspitiya, C., Rajapakse, J., & Millar, G. J. (2019). Effect of Ca:Mg ratio and high ammoniacal nitrogen on characteristics of struvite precipitated from waste activated sludge digester effluent. Journal of Environmental Sciences (China), 86, 65–77. https://doi.org/10.1016/j.jes.2019.04.023
- Munch, E., & Barr, K. (2001). Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams. Water Research, 35(1), 151–159. https://doi.org/https://doi.org/10.1016/S0043-1354(00)00236-0
- Pastor, L., Mangin, D., Barat, R., & Seco, A. (2008). A pilot-scale study of struvite precipitation in a stirred tank reactor: Conditions influencing the process. Bioresource Technology, 99(14), 6285–6291. https://doi.org/10.1016/J.BIORTECH.2007.12.003
- Pastor, L., Mangin, D., Ferrer, J., & Seco, A. (2010). Struvite formation from the supernatants of an anaerobic digestion pilot plant. Bioresource Technology, 101(1), 118–125. https://doi.org/10.1016/J.BIORTECH.2009.08.002
- Rahaman, M. S., Ellis, N., & Mavinic, D. S. (2008). Effects of various process parameters on struvite precipitation kinetics and subsequent determination of rate constants. Water Science and Technology, 57(5), 647–654. https://doi.org/10.2166/WST.2008.022
- Ramaswami, S., Behrendt, J., Wang, G., Eggers, S., & Otterpohl, R. (2016). Combining magnesium ammonium phosphate precipitation with membrane processes for ammonia removal from methanogenic leachates. Water and Environment Journal, 30(3–4), 218–226. https://doi.org/10.1111/WEJ.12210
- Ryu, H. D., Choo, Y. D., Kang, M. K., & Lee, S. I. (2014). Integrated Application of Struvite Precipitation and Biological Treatment in Treating Autothermal Thermophilic Aerobic Digestion Supernatant Liquid. Environmental Engineering Science, 31(4), 167–175. https://doi.org/10.1089/EES.2013.0313
- Ryu, H. D., Lim, C. S., Kang, M. K., & Lee, S. I. (2012). Evaluation of struvite obtained from semiconductor wastewater as a fertilizer in cultivating Chinese cabbage. Journal of Hazardous Materials, 221–222, 248–255. https://doi.org/10.1016/j.jhazmat.2012.04.038
- Shih, Y. J., Abarca, R. R. M., de Luna, M. D. G., Huang, Y. H., & Lu, M. C. (2017). Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions. Chemosphere, 173, 466–473. https://doi.org/10.1016/J.CHEMOSPHERE.2017.01.088
- Shin, H. S., & Lee, S. M. (1998). Removal of Nutrients in Wastewater by using Magnesium Salts. Environmental Technology, 19(3), 283–290. https://doi.org/10.1080/09593331908616682
- Siciliano, A. (2016). Assessment of fertilizer potential of the struvite produced from the treatment of methanogenic landfill leachate using low-cost reagents. Environmental Science and Pollution Research, 23(6), 5949–5959. https://doi.org/10.1007/S11356-015-5846-Z/METRICS
- Siciliano, A., Limonti, C., Curcio, G. M., & Molinari, R. (2020). Advances in struvite precipitation technologies for nutrients removal and recovery from aqueous waste and wastewater. Sustainability, 12(18), 1–36. https://doi.org/10.3390/su12187538
- Siciliano, A., Ruggiero, C., & De Rosa, S. (2013). A new integrated treatment for the reduction of organic and nitrogen loads in methanogenic landfill leachates. Process Safety and Environmental Protection, 91(4), 311–320. https://doi.org/10.1016/J.PSEP.2012.06.008
- Stratful, I., Scrimshaw, M. D., & Lester, J. N. (2004). Removal of Struvite to Prevent Problems Associated with its Accumulation in Wastewater Treatment Works. Water Environment Research, 76(5), 437–443. https://doi.org/10.2175/106143004X151491
- Stumm, W., & Morgan, J. J. (1995). Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters (3rd ed.). Wiley.
- Taddeo, R., & Lepistö, R. (2015). Struvite precipitation in raw and co-digested swine slurries for nutrients recovery in batch reactors. Water Science and Technology, 71(6), 892–897. https://doi.org/10.2166/WST.2015.045
- Ubando, A. T., Felix, C. B., & Chen, W. H. (2020). Biorefineries in circular bioeconomy: A comprehensive review. Bioresource Technology, 299, 122585. https://doi.org/10.1016/J.BIORTECH.2019.122585
- Uysal, A., Yilmazel, Y. D., & Demirer, G. N. (2010). The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester. Journal of Hazardous Materials, 181(1–3), 248–254. https://doi.org/10.1016/j.jhazmat.2010.05.004
- Xavier, L. D., Cammarota, M. C., Yokoyama, L., & Volschan, I. (2014). Study of the recovery of phosphorus from struvite precipitation in supernatant line from anaerobic digesters of sludge. Water Science and Technology, 69(7), 1546–1551. https://doi.org/10.2166/WST.2014.033
- Yetilmezsoy, K., & Sapci-Zengin, Z. (2009). Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer. Journal of Hazardous Materials, 166(1), 260–269. https://doi.org/10.1016/j.jhazmat.2008.11.025
|