Vol. 24, No. 1 (2025), IA24318 https://doi.org/10.24275/rmiq/IA24318


Struvite solubility equilibria calculations for the recovery of nutrients from uasb reactor effluent treating municipal wastewater


 

Authors

M.L. Salazar-Peláez, D.A. Zaragoza-Ayala, U. Rojas-Zamora


Abstract

This study aimed to evaluate the nutrient recovery potential as struvite from the UASB reactor effluent used to treat municipal wastewater through chemical equilibrium calculations. pH and Mg2+, NH4+, and PO3−4 concentrations were obtained from a pilot-scale UASB reactor treating actual municipal wastewater. This reactor operated for six months under environmental temperature and two hydraulic retention times (HRT): 8 and 12 hours and 150-day solids retention time (SRT). The conditional solubility product (Ps) for struvite and the reaction quotients (Qs) in the UASB effluent were calculated using solubility equilibria equations. Results revealed that UASB effluent was undersaturated regarding Mg2+, NH4+, and PO3−4 concentrations, and pH was around 7.5. Thus, spontaneous struvite precipitation is unlikely due to the disparity among the molar concentrations of nutrients in UASB effluent. The proposed strategies of adjusting the pH to 8.5 and adding magnesium and phosphorus ions to achieve struvite precipitation would be necessary to fulfill environmental regulations for phosphate and ammonium discharges. Before implementing experiments on a laboratory or full-scale basis, it is imperative to thoroughly evaluate the influence of calcium ions on struvite precipitation. This fact is particularly crucial due to the elevated alkalinity concentrations in the UASB reactor, which have the potential to impede struvite precipitation.


Keywords

Nutrient recovery, Solubility Product, Struvite, UASB effluent.


References

  • Adnan, A., Koch, F. A., & Mavinic, D. S. (2015). Pilot-scale study of phosphorus recovery through struvite crystallization – II: Applying in-reactor supersaturation ratio as a process control parameter. Journal of Environmental Engineering and Science, 2(6), 473–483. https://doi.org/10.1139/S03-048
  • Alewell, C., Ringeval, B., Ballabio, C., Robinson, D. A., Panagos, P., & Borrelli, P. (2020). Global phosphorus shortage will be aggravated by soil erosion. Nature Communications, 11(1), 1–12. https://doi.org/10.1038/s41467-020-18326-7
  • Ali, M. I., & Schneider, P. A. (2008). An approach of estimating struvite growth kinetic incorporating thermodynamic and solution chemistry, kinetic and process description. Chemical Engineering Science, 63(13), 3514–3525. https://doi.org/10.1016/J.CES.2008.04.023
  • Altınbas¸, M., Altınbas¸, A., Yangin, C., & Ozturk, I. (2002). Struvite precipitation from anaerobically treated municipal and landfill wastewaters. Water Science and Technology, 46(9), 271–278. https://doi.org/https://doi.org/10.2166/wst.2002.0257
  • American Public Health Association, American Water Works Association, & Water Environment Federation. (2018). Standard methods for the examination of water and wastewater. American Public Health Association.
  • Bhuiyan, M. I. H., Mavinic, D. S., & Koch, F. A. (2008). Phosphorus recovery from wastewater through struvite formation in fluidized bed reactors: a sustainable approach. Water Science and Technology, 57(2), 175–181. https://doi.org/10.2166/WST.2008.002
  • Brown, K., Harrison, J., & Bowers, K. (2018). Struvite Precipitation from Anaerobically Digested Dairy Manure. Water, Air, and Soil Pollution, 229(7), 1–11. https://doi.org/10.1007/S11270-018-3855-5/METRICS
  • Capdevielle, A., Sýkorová, E., Béline, F., & Daumer, M. L. (2014). Kinetics of struvite precipitation in synthetic biologically treated swine wastewaters. Environmental Technology, 35(10), 1250–1262. https://doi.org/10.1080/09593330.2013.865790
  • Cárdenas-Medina, K. N., Fajardo-Ortiz, M. C., Schettino-Bermúdez, B. S., Meraz-Rodríguez, M. A., & Castilla-Hernández, P. (2020). Acidogenesis/methanogenesis from acid cheese whey in hybrid-UASB reactors. Revista Mexicana de Ingeniera Quimica, 19, 17–27. https://doi.org/10.24275/rmiq/IA1420
  • Carpenter, S. R., & Bennett, E. M. (2011). Reconsideration of the planetary boundary for phosphorus. Environmental Research Letters, 6(1), 014009. https://doi.org/10.1088/1748-9326/6/1/014009
  • Catone, C. M., Ripa, M., Geremia, E., & Ulgiati, S. (2021). Bio-products from algae-based biorefinery on wastewater: A review. Journal of Environmental Management, 293, 112792. https://doi.org/10.1016/J.JENVMAN.2021.112792
  • Cervantes-Zepeda, A. I., Cruz-Colín, M. R., Aguilar-Corona, R., Castilla-Hernández, P., & Meraz-Rodríguez, M. (2011). Physicochemical and microbial characterization of the treated wastewater in a pilot scale UASB reactor. Revista Mexicana de Ingeniería Química, 10(1), 67–77. www.amidiq.com
  • Degryse, F., Baird, R., da Silva, R. C., & McLaughlin, M. J. (2017). Dissolution rate and agronomic effectiveness of struvite fertilizers – effect of soil pH, granulation and base excess. Plant and Soil, 410(1–2), 139–152. https://doi.org/10.1007/s11104-016-2990-2
  • Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van Der Bruggen, B., Verstraete, W., Rabaey, K., & Meesschaert, B. (2015). Global Phosphorus Scarcity and Full-Scale P-Recovery Techniques: A Review. Critical Reviews in Environmental Science and Technology, 45(4), 336–384. https://doi.org/10.1080/10643389.2013.866531
  • Di Iaconi, C., Pagano, M., Ramadori, R., & Lopez, A. (2010). Nitrogen recovery from a stabilized municipal landfill leachate. Bioresource Technology, 101(6), 1732–1736. https://doi.org/10.1016/J.BIORTECH.2009.10.013
  • Guadie, A., Xia, S., Jiang, W., Zhou, L., Zhang, Z., Hermanowicz, S. W., Xu, X., & Shen, S. (2014). Enhanced struvite recovery from wastewater using a novel cone-inserted fluidized bed reactor. Journal of Environmental Sciences, 26(4), 765–774. https://doi.org/10.1016/S1001-0742(13)60469-6
  • Huang, H., Mavinic, D. S., Lo, K. V., & Koch, F. A. (2006a). Production and Basic Morphology of Struvite Crystals from a Pilot-Scale Crystallization Process. Environmental Technology, 27(3), 233–245. https://doi.org/10.1080/09593332708618637
  • Huang, H., Mavinic, D. S., Lo, K. V., & Koch, F. A. (2006b). Production and basic morphology of struvite crystals from a pilot-scale crystallization process. Environmental Technology, 27(3), 233–245. https://doi.org/10.1080/09593332708618637
  • Huang, H., Zhang, D. D., Li, J., Guo, G., & Tang, S. (2017). Phosphate recovery from swine wastewater using plant ash in chemical crystallization. Journal of Cleaner Production, 168, 338–345. https://doi.org/10.1016/J.JCLEPRO.2017.09.042
  • Iqbal, M., Bhuiyan, H., & Mavinic, D. S. (2008). ASSESSING STRUVITE PRECIPITATION IN A PILOT‐SCALE FLUIDIZED BED CRYSTALLIZER. Environmental Technology, 29(11), 1157–1167. https://doi.org/10.1080/09593330802075452
  • Jordaan, E. M., Rezania, B., & Ci̧çek, N. (2013). Investigation of chemical-free nutrient removal and recovery from CO2-rich wastewater. Water Science and Technology, 67(10), 2195–2201. https://doi.org/10.2166/WST.2013.116
  • Kim, D., Ryu, H. D., Kim, M. S., Kim, J., & Lee, S. I. (2007). Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate. Journal of Hazardous Materials, 146(1–2), 81–85. https://doi.org/10.1016/J.JHAZMAT.2006.11.054
  • Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review. Critical Reviews in Environmental Science and Technology, 39(6), 433–477. https://doi.org/10.1080/10643380701640573
  • Li, X. Z., & Zhao, Q. L. (2003). Recovery of ammonium-nitrogen from landfill leachate as a multi-nutrient fertilizer. Ecological Engineering, 20(2), 171–181. https://doi.org/10.1016/S0925-8574(03)00012-0
  • Mainardis, M., Buttazzoni, M., & Goi, D. (2020). Up-flow anaerobic sludge blanket (Uasb) technology for energy recovery: A review on state-of-the-art and recent technological advances. Bioengineering, 7(2). https://doi.org/10.3390/bioengineering7020043
  • Moerman, W., Carballa, M., Vandekerckhove, A., Derycke, D., & Verstraete, W. (2009). Phosphate removal in agro-industry: Pilot- and full-scale operational considerations of struvite crystallization. Water Research, 43(7), 1887–1892. https://doi.org/10.1016/J.WATRES.2009.02.007
  • Monballiu, A., Desmidt, E., Ghyselbrecht, K., & Meesschaert, B. (2018). Phosphate recovery as hydroxyapatite from nitrified UASB effluent at neutral pH in a CSTR. Journal of Environmental Chemical Engineering, 6(4), 4413–4422. https://doi.org/10.1016/J.JECE.2018.06.052
  • Moragaspitiya, C., Rajapakse, J., & Millar, G. J. (2019). Effect of Ca:Mg ratio and high ammoniacal nitrogen on characteristics of struvite precipitated from waste activated sludge digester effluent. Journal of Environmental Sciences (China), 86, 65–77. https://doi.org/10.1016/j.jes.2019.04.023
  • Munch, E., & Barr, K. (2001). Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams. Water Research, 35(1), 151–159. https://doi.org/https://doi.org/10.1016/S0043-1354(00)00236-0
  • Pastor, L., Mangin, D., Barat, R., & Seco, A. (2008). A pilot-scale study of struvite precipitation in a stirred tank reactor: Conditions influencing the process. Bioresource Technology, 99(14), 6285–6291. https://doi.org/10.1016/J.BIORTECH.2007.12.003
  • Pastor, L., Mangin, D., Ferrer, J., & Seco, A. (2010). Struvite formation from the supernatants of an anaerobic digestion pilot plant. Bioresource Technology, 101(1), 118–125. https://doi.org/10.1016/J.BIORTECH.2009.08.002
  • Rahaman, M. S., Ellis, N., & Mavinic, D. S. (2008). Effects of various process parameters on struvite precipitation kinetics and subsequent determination of rate constants. Water Science and Technology, 57(5), 647–654. https://doi.org/10.2166/WST.2008.022
  • Ramaswami, S., Behrendt, J., Wang, G., Eggers, S., & Otterpohl, R. (2016). Combining magnesium ammonium phosphate precipitation with membrane processes for ammonia removal from methanogenic leachates. Water and Environment Journal, 30(3–4), 218–226. https://doi.org/10.1111/WEJ.12210
  • Ryu, H. D., Choo, Y. D., Kang, M. K., & Lee, S. I. (2014). Integrated Application of Struvite Precipitation and Biological Treatment in Treating Autothermal Thermophilic Aerobic Digestion Supernatant Liquid. Environmental Engineering Science, 31(4), 167–175. https://doi.org/10.1089/EES.2013.0313
  • Ryu, H. D., Lim, C. S., Kang, M. K., & Lee, S. I. (2012). Evaluation of struvite obtained from semiconductor wastewater as a fertilizer in cultivating Chinese cabbage. Journal of Hazardous Materials, 221–222, 248–255. https://doi.org/10.1016/j.jhazmat.2012.04.038
  • Shih, Y. J., Abarca, R. R. M., de Luna, M. D. G., Huang, Y. H., & Lu, M. C. (2017). Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions. Chemosphere, 173, 466–473. https://doi.org/10.1016/J.CHEMOSPHERE.2017.01.088
  • Shin, H. S., & Lee, S. M. (1998). Removal of Nutrients in Wastewater by using Magnesium Salts. Environmental Technology, 19(3), 283–290. https://doi.org/10.1080/09593331908616682
  • Siciliano, A. (2016). Assessment of fertilizer potential of the struvite produced from the treatment of methanogenic landfill leachate using low-cost reagents. Environmental Science and Pollution Research, 23(6), 5949–5959. https://doi.org/10.1007/S11356-015-5846-Z/METRICS
  • Siciliano, A., Limonti, C., Curcio, G. M., & Molinari, R. (2020). Advances in struvite precipitation technologies for nutrients removal and recovery from aqueous waste and wastewater. Sustainability, 12(18), 1–36. https://doi.org/10.3390/su12187538
  • Siciliano, A., Ruggiero, C., & De Rosa, S. (2013). A new integrated treatment for the reduction of organic and nitrogen loads in methanogenic landfill leachates. Process Safety and Environmental Protection, 91(4), 311–320. https://doi.org/10.1016/J.PSEP.2012.06.008
  • Stratful, I., Scrimshaw, M. D., & Lester, J. N. (2004). Removal of Struvite to Prevent Problems Associated with its Accumulation in Wastewater Treatment Works. Water Environment Research, 76(5), 437–443. https://doi.org/10.2175/106143004X151491
  • Stumm, W., & Morgan, J. J. (1995). Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters (3rd ed.). Wiley.
  • Taddeo, R., & Lepistö, R. (2015). Struvite precipitation in raw and co-digested swine slurries for nutrients recovery in batch reactors. Water Science and Technology, 71(6), 892–897. https://doi.org/10.2166/WST.2015.045
  • Ubando, A. T., Felix, C. B., & Chen, W. H. (2020). Biorefineries in circular bioeconomy: A comprehensive review. Bioresource Technology, 299, 122585. https://doi.org/10.1016/J.BIORTECH.2019.122585
  • Uysal, A., Yilmazel, Y. D., & Demirer, G. N. (2010). The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester. Journal of Hazardous Materials, 181(1–3), 248–254. https://doi.org/10.1016/j.jhazmat.2010.05.004
  • Xavier, L. D., Cammarota, M. C., Yokoyama, L., & Volschan, I. (2014). Study of the recovery of phosphorus from struvite precipitation in supernatant line from anaerobic digesters of sludge. Water Science and Technology, 69(7), 1546–1551. https://doi.org/10.2166/WST.2014.033
  • Yetilmezsoy, K., & Sapci-Zengin, Z. (2009). Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer. Journal of Hazardous Materials, 166(1), 260–269. https://doi.org/10.1016/j.jhazmat.2008.11.025