Vol. 24, No. 1 (2025), IA25426 https://doi.org/10.24275/rmiq/IA25426


Potential use of artichoke (Cynara cardunculus L.) waste packed in filter bags for the removal of hexavalent chromium from water


 

Authors

K. F. Diaz-Rodriguez, B. M. Salazar-Pinto, S. S. Flores-Calla, E. G. Gonzales-Condori


Abstract

The objective of the study was to evaluate the removal of Cr (VI) from water using artichoke (Cynara cardunculus L.) waste powder packed in filter bags. For this purpose, the effects of the initial Cr (VI) concentration and adsorbent dosage factors were first evaluated using a 32x3 factorial design. Subsequently, the effect of pH, time, and temperature on the removal process was evaluated. The results show that a dosage of 5 g/L and pH=2 would achieve a higher adsorption efficiency. FTIR analysis showed the presence of functional groups such as hydroxyl, carbonyl, hydrocarbon chains, and aromatic groups characteristic of lignocellulosic compounds, which would be related to the adsorption process. The morphology of the artichoke evaluated by SEM indicates an irregular surface characteristic of adsorbents. The kinetic model that best describes the adsorption process corresponds to the pseudo-second order model. The Langmuir model that best fits the experimental data indicates that the adsorption process occurs in a monolayer with a maximum adsorption capacity of 7.89 mg/g. The mechanisms involved in adsorption correspond to electrostatic attraction and chemical adsorption. With these findings, it is concluded that artichoke waste packed in filter bags for the removal of Cr (VI) in water has proven to be an effective, simple, low cost and environmentally friendly process.


Keywords

Cynara cardunculus, artichoke, Cr (VI), adsorption, water


References

  • Afroze, S., & Sen, T. K. (2018). A Review on Heavy Metal Ions and Dye Adsorption from Water by Agricultural Solid Waste Adsorbents. Water, Air, & Soil Pollution, 229(7), 225. https://doi.org/10.1007/s11270-018-3869-z
  • Agbor Tabi, G., Ngouateu Rene Blaise, L., Daouda, K., Naphtali Odogu, A., Aime Victoire, A., Nsami Julius, N., & Joseph Mbadcam, K. (2022). Non-linear modelling of the adsorption of Indigo Carmine dye from wastewater onto characterized activated carbon/volcanic ash composite. Arabian Journal of Chemistry, 15(1), 103515. https://doi.org/10.1016/j.arabjc.2021.103515
  • Ali, H., Khan, E., & Ilahi, I. (2019). Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. Journal of Chemistry, 2019, e6730305. https://doi.org/10.1155/2019/6730305
  • Arief, V. O., Trilestari, K., Sunarso, J., Indraswati, N., & Ismadji, S. (2008). Recent Progress on Biosorption of Heavy Metals from Liquids Using Low Cost Biosorbents: Characterization, Biosorption Parameters and Mechanism Studies. CLEAN – Soil, Air, Water, 36(12), 937–962. https://doi.org/10.1002/clen.200800167
  • Arshad, F., Selvaraj, M., Zain, J., Banat, F., & Haija, M. A. (2019). Polyethylenimine modified graphene oxide hydrogel composite as an efficient adsorbent for heavy metal ions. Separation and Purification Technology, 209, 870–880. https://doi.org/10.1016/j.seppur.2018.06.035
  • Bencheikh, I., Azoulay, K., Mabrouki, J., El Hajjaji, S., Dahchour, A., Moufti, A., & Dhiba, D. (2020). The adsorptive removal of MB using chemically treated artichoke leaves: Parametric, kinetic, isotherm and thermodynamic study. Scientific African, 9, e00509. https://doi.org/10.1016/j.sciaf.2020.e00509
  • Bencheikh, I., Azoulay, K., Mabrouki, J., El Hajjaji, S., Moufti, A., & Labjar, N. (2021). The use and the performance of chemically treated artichoke leaves for textile industrial effluents treatment. Chemical Data Collections, 31, 100597. https://doi.org/10.1016/j.cdc.2020.100597
  • Blanes, P. S., Bordoni, M. E., González, J. C., García, S. I., Atria, A. M., Sala, L. F., & Bellú, S. E. (2016). Application of soy hull biomass in removal of Cr(VI) from contaminated waters. Kinetic, thermodynamic and continuous sorption studies. Journal of Environmental Chemical Engineering, 4(1), 516–526. https://doi.org/10.1016/j.jece.2015.12.008
  • Choquenaira-Quispe, C., Villanueva-Salas, J. A., Yucra-Condori, H. R., Angulo Vargas, S. J., Rojas Tamata, K., & Gonzales-Condori, E. G. (2024). “Chacco” clay from the Peruvian highlands as a potential adsorbent of heavy metals in water. Energy Nexus, 16, 100330. https://doi.org/10.1016/j.nexus.2024.100330
  • de Diego-Díaz, B., Peñas, F. J., & Fernández- Rodríguez, J. (2021). Sustainable management of lignocellulosic wastes: Temperature strategies for anaerobic digestion of artichoke. Journal of Cleaner Production, 280, 124479. https://doi.org/10.1016/j.jclepro.2020.124479
  • Dobrowolski, R., Krzyszczak, A., Dobrzyńska, J., Podkościelna, B., Zięba, E., Czemierska, M., Jarosz-Wilkołazka, A., & Stefaniak, E. A. (2019). Extracellular polymeric substances immobilized on microspheres for removal of heavy metals from aqueous environment. Biochemical Engineering Journal, 143, 202–211. https://doi.org/10.1016/j.bej.2019.01.004
  • Elgarahy, A. M., Elwakeel, K. Z., Mohammad, S. H., & Elshoubaky, G. A. (2021). A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Cleaner Engineering and Technology, 4, 100209. https://doi.org/10.1016/j.clet.2021.100209
  • Ergüvenerler, F., Targan, Ş., & Tirtom, V. N. (2020). Removal of lead from aqueous solutions by low cost and waste biosorbents (lemon, bean and artichoke shells). Water Science and Technology, 81(1), 159–169. https://doi.org/10.2166/wst.2020.093
  • FAO. (2018). Estadísticas | Food and Agriculture Organization (FAO) | Organización de las Naciones Unidas para la Alimentación y la Agricultura. https://www.fao.org/statistics/es
  • Fenti, A., Chianese, S., Iovino, P., Musmarra, D., & Salvestrini, S. (2020). Cr(VI) Sorption from Aqueous Solution: A Review. Applied Sciences, 10(18), Article 18. https://doi.org/10.3390/app10186477
  • Fernández-López, J. A., Angosto, J. M., Roca, M. J., & Doval Miñarro, M. (2019). Taguchi design-based enhancement of heavy metals bioremoval by agroindustrial waste biomass from artichoke. Science of The Total Environment, 653, 55–63. https://doi.org/10.1016/j.scitotenv.2018.10.343
  • Fouda, A., Hassan, S. E.-D., Abdel-Rahman, M. A., Farag, M. M. S., Shehal-deen, A., Mohamed, A. A., Alsharif, S. M., Saied, E., Moghanim, S. A., & Azab, M. S. (2021). Catalytic degradation of wastewater from the textile and tannery industries by green synthesized hematite (α-Fe2O3) and magnesium oxide (MgO) nanoparticles. Current Research in Biotechnology, 3, 29–41. https://doi.org/10.1016/j.crbiot.2021.01.004
  • Gonzales-Condori, E., Avalos-López, G., Mujica-Guzman, A., Terán-Hilares, R., Briceño, G., Quispe-Avilés, J., Parra, P., & Villanueva-Salas, J. (2023). Avocado seed powder residues as a promising bio-adsorbent for color removal from textile wastewater. Revista Mexicana de Ingeniería Química, 22. https://doi.org/10.24275/rmiq/IA2370
  • Hajji Nabih, M., El Hajam, M., Boulika, H., Chiki, Z., Ben Tahar, S., Idrissi Kandri, N., & Zerouale, A. (2023). Preparation and characterization of activated carbons from cardoon “Cynara Cardunculus” waste: Application to the adsorption of synthetic organic dyes. Materials Today: Proceedings, 72, 3369–3379. https://doi.org/10.1016/j.matpr.2022.07.414
  • Hossain, K. F. B., Sikder, Md. T., Rahman, Md. M., Uddin, Md. K., & Kurasaki, M. (2017). Investigation of Chromium Removal Efficacy from Tannery Effluent by Synthesized Chitosan from Crab Shell. Arabian Journal for Science and Engineering, 42(4), 1569–1577. https://doi.org/10.1007/s13369-017-2435-0
  • Jamil, U., Zeeshan, M., Khan, S. R., & Saeed, S. (2023). Synthesis and two-step KOH based activation of porous biochar of wheat straw and waste tire for adsorptive exclusion of chromium (VI) from aqueous solution; thermodynamic and regeneration study. Journal of Water Process Engineering, 53, 103892. https://doi.org/10.1016/j.jwpe.2023.103892
  • Jasper, E. E., Ajibola, V. O., & Onwuka, J. C. (2020). Nonlinear regression analysis of the sorption of crystal violet and methylene blue from aqueous solutions onto an agro-waste derived activated carbon. Applied Water Science, 10(6), 132. https://doi.org/10.1007/s13201-020-01218-y
  • Jiménez-González, A., Tec-Caamal, E. N., Medina-Moreno, S. A., & Universidad Politécnica de Pachuca. (2024). Biosorption performance evaluation of azo dyes Reactive Red 2 and Reactive Blue 4 on thermally sterilized biomass of Cladosporium tenuissimum fungus. Revista Mexicana de Ingeniería Química, 23(1), 1–33. https://doi.org/10.24275/rmiq/IA24161
  • Khalfaoui, A., Benalia, A., Laggoun, Z., Bouchareb, R., Zaamta, I., Melloul, R., Menasria, A., Merouani, S., Pizzi, A., & Derbal, K. (2024). Effective synthesis and application of artichoke and orange peels-based bio-sorbents for Ketoprofen removal from wastewater: Process optimization using Factorial methodology. Desalination and Water Treatment, 317, 100197. https://doi.org/10.1016/j.dwt.2024.100197
  • Khalfaoui, A., Khelifi, M. N., Khelfaoui, A., Benalia, A., Derbal, K., Gisonni, C., Crispino, G., & Panico, A. (2022). The Adsorptive Removal of Bengal Rose by Artichoke Leaves: Optimization by Full Factorials Design. Water, 14(14), Article 14. https://doi.org/10.3390/w14142251
  • Lattanzio, V., Kroon, P. A., Linsalata, V., & Cardinali, A. (2009). Globe artichoke: A functional food and source of nutraceutical ingredients. Journal of Functional Foods, 1(2), 131–144. https://doi.org/10.1016/j.jff.2009.01.002
  • Li, Q., Huang, Q., Pan, X. Y., Yu, H., & Zhao, Z. T. (2022). Adsorption behavior of Cr(VI) by biomass-based adsorbent functionalized with deep eutectic solvents (DESs). BMC Chemistry, 16(1), 41. https://doi.org/10.1186/s13065-022-00834-w
  • López-Téllez, G., Barrera-Díaz, C. E., Balderas-Hernández, P., Roa-Morales, G., & Bilyeu, B. (2011). Removal of hexavalent chromium in aquatic solutions by iron nanoparticles embedded in orange peel pith. Chemical Engineering Journal, 173(2), 480–485. https://doi.org/10.1016/j.cej.2011.08.018
  • Mondal, N. K., Samanta, A., Roy, P., & Das, B. (2019). Optimization study of adsorption parameters for removal of Cr(VI) using Magnolia leaf biomass by response surface methodology. Sustainable Water Resources Management, 5(4), 1627–1639. https://doi.org/10.1007/s40899-019-00322-5
  • Nagpal, M., & Kakkar, R. (2020). Facile synthesis of mesoporous magnesium oxide–graphene oxide composite for efficient and highly selective adsorption of hazardous anionic dyes. Research on Chemical Intermediates, 46(5), 2497–2521. https://doi.org/10.1007/s11164-020-04103-0
  • Parlayici, Ş., & Pehlivan, E. (2019). Comparative study of Cr(VI) removal by bio-waste adsorbents: Equilibrium, kinetics, and thermodynamic. Journal of Analytical Science and Technology, 10(1), 15. https://doi.org/10.1186/s40543-019-0175-3
  • Petrella, A., Spasiano, D., Rizzi, V., Cosma, P., Race, M., & De Vietro, N. (2018). Lead Ion Sorption by Perlite and Reuse of the Exhausted Material in the Construction Field. Applied Sciences, 8(10), Article 10. https://doi.org/10.3390/app8101882
  • Quattrocchi, O., Abelaira, S., & Felipe Laba, R. (1992). Introduccion a la HPLC, Aplicacion y Practica.
  • Que, W., Zhou, Y., Liu, Y., Wen, J., Tan, X., Liu, S., & Jiang, L. (2019). Appraising the effect of in-situ remediation of heavy metal contaminated sediment by biochar and activated carbon on Cu immobilization and microbial community. Ecological Engineering, 127, 519–526. https://doi.org/10.1016/j.ecoleng.2018.10.005
  • Rambabu, K., Bharath, G., Banat, F., & Show, P. L. (2020). Biosorption performance of date palm empty fruit bunch wastes for toxic hexavalent chromium removal. Environmental Research, 187, 109694. https://doi.org/10.1016/j.envres.2020.109694
  • Rosique, M., Angosto, J. M., Guibal, E., Roca, M. J., & Fernández-López, J. A. (2016). Factorial Design Methodological Approach for Enhanced Cadmium Ions Bioremoval by Opuntia Biomass. CLEAN – Soil, Air, Water, 44(8), 959–966. https://doi.org/10.1002/clen.201500368
  • Saavedra, M. I., Doval Miñarro, M., Angosto, J. M., & Fernández-López, J. A. (2019). Reuse potential of residues of artichoke (Cynara scolymus L.) from industrial canning processing as sorbent of heavy metals in multimetallic effluents. Industrial Crops and Products, 141, 111751. https://doi.org/10.1016/j.indcrop.2019.111751
  • Salazar-Pinto, B. M., Zea-Linares, V., Villanueva-Salas, J. A., & Gonzales-Condori, E. G. (2021). Cd (II) and Pb (II) biosorption in aqueous solutions using agricultural residues of Phaseolus vulgaris L.: Optimization, kinetics, isotherms and desorption. Revista Mexicana de Ingeniería Química, 20(1), Article 1. https://doi.org/10.24275/rmiq/IA1864
  • Samghouli, N., Bencheikh, I., Azoulay, K., Abahdou, F.-Z., Mabrouki, J., & El Hajjaji, S. (2022). Study of Piroxicam Removal from Wastewater by Artichoke Waste Using NemrodW® Software: Statistical Analysis. In M. Azrour, A. Irshad, & R. Chaganti (Eds.), IoT and Smart Devices for Sustainable Environment (pp. 29–42). Springer International Publishing. https://doi.org/10.1007/978-3-030-90083-0_3
  • Sharma, P. K., Ayub, S., & Tripathi, C. N. (2016). Isotherms describing physical adsorption of Cr(VI) from aqueous solution using various agricultural wastes as adsorbents. Cogent Engineering, 3(1), 1186857. https://doi.org/10.1080/23311916.2016.1186857
  • Sun, S., Zhu, J., Zheng, Z., Li, J., & Gan, M. (2019). Biosynthesis of β-cyclodextrin modified Schwertmannite and the application in heavy metals adsorption. Powder Technology, 342, 181–192. https://doi.org/10.1016/j.powtec.2018.09.072
  • Vu, T. P., Quyen, L. T. T., Hiep, N. T., Thu, T. T. H., & Suong, T. T. (2024). Hexavalent Chromium Adsorption on Adsorbent Derived From Biomass of Fabaceae Plant in Vietnam: Effect of Preparation Conditions on Equilibrium Adsorption Capacity. Environmental Quality Management, 34(2), e22353. https://doi.org/10.1002/tqem.22353
  • Wang, W., Wei, P., Wang, C., Liang, P., Tao, F., Yang, S., Dou, W., & Hu, B. (2025). Honeycomb-structured biochar from waste pomelo peel for synergistic adsorptive and photocatalytic removal of Cr(VI). Carbon Research, 4(1), 10. https://doi.org/10.1007/s44246-024-00174-5
  • Worku, Z., Tibebu, S., Nure, J. F., Tibebu, S., Moyo, W., Ambaye, A. D., & Nkambule, T. T. I. (2023). Adsorption of chromium from electroplating wastewater using activated carbon developed from water hyacinth. BMC Chemistry, 17(1), 85. https://doi.org/10.1186/s13065-023-00993-4
  • Xu, Y., Chen, J., Chen, R., Yu, P., Guo, S., & Wang, X. (2019). Adsorption and reduction of chromium(VI) from aqueous solution using polypyrrole/calcium rectorite composite adsorbent. Water Research, 160, 148–157. https://doi.org/10.1016/j.watres.2019.05.055
  • Yang, J., Huang, B., & Lin, M. (2020). Adsorption of Hexavalent Chromium from Aqueous Solution by a Chitosan/Bentonite Composite: Isotherm, Kinetics, and Thermodynamics Studies. Journal of Chemical & Engineering Data, 65(5), 2751–2763. https://doi.org/10.1021/acs.jced.0c00085
  • Zhang, X., Cui, L., Chen, B., Xiong, Q., Zhan, Y., Ye, J., & Yin, Q. (2021). Effect of chromium supplementation on hs-CRP, TNF-α and IL-6 as risk factor for cardiovascular diseases: A meta-analysis of randomized-controlled trials. Complementary Therapies in Clinical Practice, 42, 101291. https://doi.org/10.1016/j.ctcp.2020.101291
  • Zhao, M., Xu, Y., Zhang, C., Rong, H., & Zeng, G. (2016). New trends in removing heavy metals from wastewater. Applied Microbiology and Biotechnology, 100(15), 6509–6518. https://doi.org/10.1007/s00253-016-7646-x
Zuorro, A., Maffei, G., & Lavecchia, R. (2016). Reuse potential of artichoke (Cynara scolimus L.) waste for the recovery of phenolic compounds and bioenergy. Journal of Cleaner Production, 111, 279–284. https://doi.org/10.1016/j.jclepro.2015.06.011