- Allegrini, A., Salvaneschi, P., Schirone, B., Cianfaglione, K., & Di Michele, A. (2022). Multipurpose plant species and circular economy: Corylus avellana L. as a study case. Frontiers in Bioscience - Landmark, 27(1), 11. doi: 10.31083/j.fbl2701011.
- Ameen, M., et al. (2022). Prospects of Catalysis for Process Sustainability of Eco-Green Biodiesel Synthesis via Transesterification: A State-Of-The-Art Review. Sustainability, 14(12), 7032. doi: 10.3390/SU14127032.
- Atadashi, I. M., Aroua, M. K., & Aziz, A. A. (2010). High quality biodiesel and its diesel engine application: A review. Renewable and Sustainable Energy Reviews, 14(7), 1999–2008. doi: 10.1016/J.RSER.2010.03.020.
- Ayaz, M., et al. (2021). Biochar Role in the Sustainability of Agriculture and Environment. Sustainability, 13(3), 1330. doi: 10.3390/SU13031330.
- Bekele, D. T., Shibeshi, N. T., & Reshad, A. S. (2022). Heterogeneous Catalysts from Metallic Oxides and Lignocellulosic Biomasses Ash for the Valorization of Feedstocks into Biodiesel: an Overview. BioEnergy Research, 15, 1–19. doi: 10.1007/S12155-022-10546-7.
- Bekele, D. T., Shibeshi, N. T., & Reshad, A. S. (2022). KNO3-Loaded Coffee Husk Ash as a Heterogeneous Alkali Catalyst for Waste Frying Oil Valorization into Biodiesel. ACS Omega, 7(49), 45129–45143. doi: 10.1021/acsomega.2c05572.
- Brahma, S., et al. (2022). Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production. Chemical Engineering Journal Advances, 10, 100284. doi: 10.1016/j.ceja.2022.100284.
- CEPAL, (2017). Retrieved from https://www.cepal.org/en.
- Chen, D., et al. (2022). Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: Evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio‐oil. Combustion and Flame, 242, 112142. doi: 10.1016/J.COMBUSTFLAME.2022.112142.
- Cilas, C., & Bastide, P. (2020). Challenges to Cocoa Production in the Face of Climate Change and the Spread of Pests and Diseases. Agronomy, 10(9), 1232. doi: 10.3390/AGRONOMY10091232.
- Cordero-Ravelo, V., & Schallenberg-Rodriguez, J. (2018). Biodiesel production as a solution to waste cooking oil (WCO) disposal. Will any type of WCO do for a transesterification process? A quality assessment. Journal of Environmental Management, 228, 117–129. doi: 10.1016/J.JENVMAN.2018.08.106.
- Folorunsho, A., Etim, V., Ekop, I., & Emberru, R. E. (2022). Residual wood ash powder: A predecessor for the synthesis of CaO–K2O–SiO2 base catalyst employed for the production of biodiesel from Asimina triloba oil seed. Case Studies in Chemical and Environmental Engineering, 6, 100252. doi: 10.1016/j.cscee.2022.100252.
- Mathew E. et al. (2021). Recent advances in biodiesel production: Challenges and solutions. Science of The Total Environment, vol. 794, p. 148751, doi: 10.1016/j.scitotenv.2021.148751.
- González-Brambila, M. M., Montoya de la Fuente, J. A., González-Brambila, O., & López-Isunza, F. (2014). A heterogeneous biodiesel production kinetic model. Revista mexicana de ingeniería química, 13(1), 311-322.Camas-Anzueto, J. L., et al. (2017). Measurement of the viscosity of biodiesel by using an optical viscometer. Flow Measurement and Instrumentation, 54, 82–87. doi: 10.1016/J.FLOWMEASINST.2016.12.004.
- Habibullah, M., et al. (2015). Potential of biodiesel as a renewable energy source in Bangladesh. Renewable and Sustainable Energy Reviews, 50, 819–834. doi: 10.1016/J.RSER.2015.04.149.
- Joshi, S., Hadiya, P., Shah, M., & Sircar, A. (2019). Techno-economical and Experimental Analysis of Biodiesel Production from Used Cooking Oil. Biophysical Economics and Resource Quality, 4(1), 0. doi: 10.1007/s41247-018-0050-7.
- Maheshwari, P., et al. (2022). A review on latest trends in cleaner biodiesel production: Role of feedstock, production methods, and catalysts. Journal of Cleaner Production, 355, 131588. doi: 10.1016/J.JCLEPRO.2022.131588.
- Mendoza-Meneses, C. J., Feregrino-Pérez, A. A., & Gutiérrez-Antonio, C. (2021). Potential Use of Industrial Cocoa Waste in Biofuel Production. Journal of Chemistry, 2021, Article ID 3388067. doi: 10.1155/2021/3388067.
- Molina Martínez, R., & Ramos Martínez, M. F. (2020). Determinants That Influenced Mexican Cocoa Beans Exports During 1996–2016. In A. Kavoura, E. Kefallonitis, & P. Theodoridis (Eds.), Strategic Innovative Marketing and Tourism (pp. 917–924). Springer, Cham. doi: 10.1007/978-3-030-36126-6_101.
- Ozturk, G., & Young, G. M. (2017). Food evolution: the impact of society and science on the fermentation of cocoa beans. Comprehensive Reviews in Food Science and Food Safety, 16(3), 431–455. doi: 10.1111/1541-4337.12264.
- Pinzon-Nuñez, D. A., Adarme-Durán, C. A., Vargas-Fiallo, L. Y., Rodriguez-Lopez, N., & Rios-Reyes, C. A. (2022). Biochar as a waste management strategy for cadmium contaminated cocoa pod husk residues. International Journal of Recycling of Organic Waste in Agriculture, 11(1), 101–115. doi: 10.30486/IJROWA.2021.1920124.1192.
- Saavedra, R. M., García, H. J., Sanchez, M. I., & Baigori, M. D. (2019). Biodiesel a partir de aceite usado de locales gastronómicos: efecto de la temperatura de reacción. Extensionismo, Innovación y Transferencia Tecnológica, 5.
- Sánchez-Olmos, L. A., Sánchez-Cárdenas, M., Sathish-Kumar, K., Tirado-González, D. N., & Rodríguez-Valadez, F. J. (2020). Sulfonated rim rubber used as a solid catalyst for the biodiesel production with oleic acid and optimized by Box-Behnken method. Revista Mexicana de Ingeniería Química, 19(Sup. 1), 429-444.
- Simón, D., Palet, C., Costas, A., & Cristóbal, A. (2022). Agro-Industrial Waste as Potential Heavy Metal Adsorbents and Subsequent Safe Disposal of Spent Adsorbents. Water, 14(20), 3298. doi: 10.3390/W14203298.
- Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Biotechnology, 19(1), 191–215. doi: 10.1007/S11157-020-09523-3.
- United Nations. (2017). Retrieved from https://www.un.org/en/.
- Vásquez, Z. S., et al. (2019). Biotechnological approaches for cocoa waste management: A review. Waste Management, 90, 72-83. doi: 10.1016/j.wasman.2019.04.030.
- Wang, B., Wang, B., Shukla, S. K., & Wang, R. (2023). Enabling Catalysts for Biodiesel Production via Transesterification. Catalysts, 13(4), 740. doi: 10.3390/CATAL13040740.
|