Vol. 24, No. 1 (2025), IE24221 https://doi.org/10.24275/rmiq/IE24221


Cocoa shell biochars for sustainable biodiesel production in Ecuador


 

Authors

H.I. Romero-Bonilla, A. Jaramillo-Guanolique, C. Zambrano, M. Rios-Hidalgo, L. Solano-Maza, C. Choez-Tobo


Abstract

The cocoa shells were ground to a #60 mesh size, then subjected to temperatures of 400°C and 600°C in a muffle furnace for two hours to produce a catalyst and biochar. Biochar was characterized using Scanning Electron Microscopy and Infrared Spectrophotometry. In the biodiesel production process, biochar served as an absorbent to filter impurities from the oil. The treated oil underwent transesterification in a double-jacketed reactor at 55°C for 120 minutes and 150 rpm. Biodiesel properties, including density, viscosity, and acidity index, were analyzed. Biochar's pore perimeter exhibited values of 15.23, 7.40, and 2.30 µm, indicating elongated blocks and dispersed pores with rounded and irregular edges. Significantly different results were obtained with p-values of 0.001 for viscosity, 0.013 for density, and 0.03 for the acidity index of biodiesel. A comparison between biodiesel processed with the biocatalyst and NaOH revealed differences in acidity index (0.19 vs. 0.30) and density (0.83 vs. 0.91 g/mL), respectively. The study demonstrates the effectiveness of biochar as a catalyst in enhancing biodiesel quality.


Keywords

Biocatalyst, sustainability, frying oil, valorization, characterization.


References

  • Allegrini, A., Salvaneschi, P., Schirone, B., Cianfaglione, K., & Di Michele, A. (2022). Multipurpose plant species and circular economy: Corylus avellana L. as a study case. Frontiers in Bioscience - Landmark, 27(1), 11. doi: 10.31083/j.fbl2701011.
  • Ameen, M., et al. (2022). Prospects of Catalysis for Process Sustainability of Eco-Green Biodiesel Synthesis via Transesterification: A State-Of-The-Art Review. Sustainability, 14(12), 7032. doi: 10.3390/SU14127032.
  • Atadashi, I. M., Aroua, M. K., & Aziz, A. A. (2010). High quality biodiesel and its diesel engine application: A review. Renewable and Sustainable Energy Reviews, 14(7), 1999–2008. doi: 10.1016/J.RSER.2010.03.020.
  • Ayaz, M., et al. (2021). Biochar Role in the Sustainability of Agriculture and Environment. Sustainability, 13(3), 1330. doi: 10.3390/SU13031330.
  • Bekele, D. T., Shibeshi, N. T., & Reshad, A. S. (2022). Heterogeneous Catalysts from Metallic Oxides and Lignocellulosic Biomasses Ash for the Valorization of Feedstocks into Biodiesel: an Overview. BioEnergy Research, 15, 1–19. doi: 10.1007/S12155-022-10546-7.
  • Bekele, D. T., Shibeshi, N. T., & Reshad, A. S. (2022). KNO3-Loaded Coffee Husk Ash as a Heterogeneous Alkali Catalyst for Waste Frying Oil Valorization into Biodiesel. ACS Omega, 7(49), 45129–45143. doi: 10.1021/acsomega.2c05572.
  • Brahma, S., et al. (2022). Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production. Chemical Engineering Journal Advances, 10, 100284. doi: 10.1016/j.ceja.2022.100284.
  • CEPAL, (2017). Retrieved from https://www.cepal.org/en.
  • Chen, D., et al. (2022). Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: Evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio‐oil. Combustion and Flame, 242, 112142. doi: 10.1016/J.COMBUSTFLAME.2022.112142.
  • Cilas, C., & Bastide, P. (2020). Challenges to Cocoa Production in the Face of Climate Change and the Spread of Pests and Diseases. Agronomy, 10(9), 1232. doi: 10.3390/AGRONOMY10091232.
  • Cordero-Ravelo, V., & Schallenberg-Rodriguez, J. (2018). Biodiesel production as a solution to waste cooking oil (WCO) disposal. Will any type of WCO do for a transesterification process? A quality assessment. Journal of Environmental Management, 228, 117–129. doi: 10.1016/J.JENVMAN.2018.08.106.
  • Folorunsho, A., Etim, V., Ekop, I., & Emberru, R. E. (2022). Residual wood ash powder: A predecessor for the synthesis of CaO–K2O–SiO2 base catalyst employed for the production of biodiesel from Asimina triloba oil seed. Case Studies in Chemical and Environmental Engineering, 6, 100252. doi: 10.1016/j.cscee.2022.100252.
  • Mathew E. et al. (2021). Recent advances in biodiesel production: Challenges and solutions. Science of The Total Environment, vol. 794, p. 148751, doi: 10.1016/j.scitotenv.2021.148751.
  • González-Brambila, M. M., Montoya de la Fuente, J. A., González-Brambila, O., & López-Isunza, F. (2014). A heterogeneous biodiesel production kinetic model. Revista mexicana de ingeniería química, 13(1), 311-322.Camas-Anzueto, J. L., et al. (2017). Measurement of the viscosity of biodiesel by using an optical viscometer. Flow Measurement and Instrumentation, 54, 82–87. doi: 10.1016/J.FLOWMEASINST.2016.12.004.
  • Habibullah, M., et al. (2015). Potential of biodiesel as a renewable energy source in Bangladesh. Renewable and Sustainable Energy Reviews, 50, 819–834. doi: 10.1016/J.RSER.2015.04.149.
  • Joshi, S., Hadiya, P., Shah, M., & Sircar, A. (2019). Techno-economical and Experimental Analysis of Biodiesel Production from Used Cooking Oil. Biophysical Economics and Resource Quality, 4(1), 0. doi: 10.1007/s41247-018-0050-7.
  • Maheshwari, P., et al. (2022). A review on latest trends in cleaner biodiesel production: Role of feedstock, production methods, and catalysts. Journal of Cleaner Production, 355, 131588. doi: 10.1016/J.JCLEPRO.2022.131588.
  • Mendoza-Meneses, C. J., Feregrino-Pérez, A. A., & Gutiérrez-Antonio, C. (2021). Potential Use of Industrial Cocoa Waste in Biofuel Production. Journal of Chemistry, 2021, Article ID 3388067. doi: 10.1155/2021/3388067.
  • Molina Martínez, R., & Ramos Martínez, M. F. (2020). Determinants That Influenced Mexican Cocoa Beans Exports During 1996–2016. In A. Kavoura, E. Kefallonitis, & P. Theodoridis (Eds.), Strategic Innovative Marketing and Tourism (pp. 917–924). Springer, Cham. doi: 10.1007/978-3-030-36126-6_101.
  • Ozturk, G., & Young, G. M. (2017). Food evolution: the impact of society and science on the fermentation of cocoa beans. Comprehensive Reviews in Food Science and Food Safety, 16(3), 431–455. doi: 10.1111/1541-4337.12264.
  • Pinzon-Nuñez, D. A., Adarme-Durán, C. A., Vargas-Fiallo, L. Y., Rodriguez-Lopez, N., & Rios-Reyes, C. A. (2022). Biochar as a waste management strategy for cadmium contaminated cocoa pod husk residues. International Journal of Recycling of Organic Waste in Agriculture, 11(1), 101–115. doi: 10.30486/IJROWA.2021.1920124.1192.
  • Saavedra, R. M., García, H. J., Sanchez, M. I., & Baigori, M. D. (2019). Biodiesel a partir de aceite usado de locales gastronómicos: efecto de la temperatura de reacción. Extensionismo, Innovación y Transferencia Tecnológica, 5.
  • Sánchez-Olmos, L. A., Sánchez-Cárdenas, M., Sathish-Kumar, K., Tirado-González, D. N., & Rodríguez-Valadez, F. J. (2020). Sulfonated rim rubber used as a solid catalyst for the biodiesel production with oleic acid and optimized by Box-Behnken method. Revista Mexicana de Ingeniería Química, 19(Sup. 1), 429-444.
  • Simón, D., Palet, C., Costas, A., & Cristóbal, A. (2022). Agro-Industrial Waste as Potential Heavy Metal Adsorbents and Subsequent Safe Disposal of Spent Adsorbents. Water, 14(20), 3298. doi: 10.3390/W14203298.
  • Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Biotechnology, 19(1), 191–215. doi: 10.1007/S11157-020-09523-3.
  • United Nations. (2017). Retrieved from https://www.un.org/en/.
  • Vásquez, Z. S., et al. (2019). Biotechnological approaches for cocoa waste management: A review. Waste Management, 90, 72-83. doi: 10.1016/j.wasman.2019.04.030.
  • Wang, B., Wang, B., Shukla, S. K., & Wang, R. (2023). Enabling Catalysts for Biodiesel Production via Transesterification. Catalysts, 13(4), 740. doi: 10.3390/CATAL13040740.