Vol. 24, No. 1 (2025), IE2444 https://doi.org/10.24275/rmiq/IE2444


Obtention methyl esters fractions through distillation and pour point evaluation of the obtained fractions


 

Authors

F.A.S. Mota, A.S.S. Furtado, A.B.V. Leitao, N.C. Medeiros, G.S. Pereira, M.N. Almeida, A. Oliveira, M.M. Oliveira, F.T.R. Caselli


Abstract

The study aimed to obtain distilled fractions from babassu oil esters. A simulation of ester distillation was performed and compared with the results obtained from an actual distillation unit. Simulations were evaluated for both batch and continuous operations. However, the results from the continuous simulation showed a smaller percentage variation compared to the fractions obtained from the developed system. It was observed that the product from batch distillation contained higher fractions of constituents that could affect its flow properties. One such constituent, Methyl Esters (C18), had a pour point of 39.30°C. The continuous system operated with a reflux ratio (RR) of one. The product sample BK011107 had a pour point of -21.00°C, while samples from the batch system (BK0507F1) had a pour point of -18.00°C. A NRTL model was used in the simulation. The continuous process in the real distillation system yielded better compositional results.


Keywords

Methyl Esters, Distillation, Freezing Point.


References

  • Aldana-González, M.G., Gómez-Castro, F.I., Romero-Izquierdo, A.G., Conde-Mejía, C., Gutiérrez-Antonio, C., Morales-Rodríguez, R. Supercritical biodiesel production: Feasibility of energy integration with a bioethanol production process. Revista Mexicana de Ingeniería Química, v. 21, n. 1 (2022). DOI: https://doi.org/10.24275/rmiq/Proc2534.
  • Araújo, V. K. W. S., Hamacher, S and Scavarda, L. F. “Economic assessment of biodiesel production from waste frying oils”. Bioresource Technology, 101, 4415–4422 (2010).
  • Atadashi, I. M., Aroua, M. K. and Aziz, A. A. “Biodiesel separation and purification”: A review. Renewable Energy, 36, 437- 44 (2011).
  • Babinszki, B., Jakab, E., Terjék, V., Sebestyén, Z. Czirok, I. S., Bozi, J., Attanatho, L., Thanmongkhon, Y., Czégény, Z. In situ formation of fatty acid methyl esters via thermally assisted methylation by lignin during torrefaction of oil palm biomass. Journal of Analytical and Applied Pyrolysis, Volume 168, 2022, 105720, ISSN 0165-2370, https://doi.org/10.1016/j.jaap.2022.105720.
  • Bósquez-Molina, E. (2002). Water vapor permeability of edible films. Presentación 100B-34. 15-19 Junio. Anaheim, California: Institute of Food Technologists Annual Meeting.
  • Bourriot, S., Garnier, C. y Doublier, J.L. (1999). Phase separation, rheology, and microstructure of micellar casein-guar gum mixtures.  Food Hydrocolloids 7, 90-95.
  • Carsten Wedler, C., J.P. Martin Trusler, J. P. M. Review of density and viscosity data of pure fatty acid methyl ester, ethyl ester and butyl ester. Fuel, Volume 339, 2023, 127466, ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2023.127466.
  • Carvajal, M. N. (2000). Estudio del Sembrado en Procesos de Cristalización por Lotes. Tesis de Maestría en Ciencias en Ingeniería Química, Instituto Tecnológico de Celaya, México.
  • Chen, W., Wang,Y., Ding, M.,Shi, S and Yang, Z. “Crystallization behaviors and rheological properties of biodiesel derived from methanol and ethanol”. Fuel, 207, 503–509 (2017).
  • Dunn, R.O., Shockley, M.W and Bagby, M.O.“Improving the low-temperature flow properties of alternative diesel fuels: vegetable oil-derived methyl esters”. J Am Oil Chem Soc., 73, 1719–1728 (1996).
  • Glisic, S., Montoya, O., Orlovic, A and Skala, D. “Vapor–liquid equilibria of triglycerides–methanol mixtures and their influence on the biodiesel synthesis under supercritical conditions of methanol”. J. Serb. Chem. Soc., 72, 13–27 (2007).
  • Grases, F. F., Costa, B. A. y Söhnel, O. (2000). Cristalización en disolución, conceptos básicos. Editorial Reverté, México.
  • Han, P., Genkuo Nie, G., Xie, J, Xiu-tian-feng, E., Pan, L., Zhang, X and Zou, J.J. “Synthesis of high-density biofuel with excellent low-temperature properties from lignocellulose-derived feedstock”. Fuel Processing Technology,163, 45–50 (2017).
  • Imahara, H., Minami E and Saka. S. “Thermodynamic study on cloud point of biodiesel with its fatty acid composition”. Fuel, 85,1666–1670 (2006).
  • Krochta, E.M. (1990). Emulsion films on food products to control mass transfer. En:  Food Emulsions and Foams, (E.L. Gaden y E. Doi, eds.), Pp. 65-78. Plenum Press, Nueva York.
  • Kumbhar, V., Pandey, A., Sonawane, C. R., El-Shafay, A.S., Panchal, H., Chamkha, A. J. Statistical analysis on prediction of biodiesel properties from its fatty acid composition. Case Studies in Thermal Engineering, Volume 30, 2022, 101775, ISSN 2214-157X, https://doi.org/10.1016/j.csite.2022.101775.
  • Lau, C. H., Gan, S., Lau, H. L. N., Lee, L. Y., Thangalazhy-Gopakumar, S., Kiat Ng, H. Insights into the effectiveness of synthetic and natural additives in improving biodiesel oxidation stability. Sustainable Energy Technologies and Assessments, Volume 52, Part D, 2022, 102296, ISSN 2213-1388, https://doi.org/10.1016/j.seta.2022.102296.
  • Lužaić, T., Kravić, S., Stojanović, Z., Grahovac, N., Jocić, S., Cvejić, S., Pezo, L., Romanić, R. Investigation of oxidative characteristics, fatty acid composition and bioactive compounds content in cold pressed oils of sunflower grown in Serbia and Argentina. Heliyon, Volume 9, Issue 7, 2023, e18201, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2023.e18201.
  • Mantovani, A. C. G., Chendynski, L. T., Galvan, D., Macedo, F. C. J., Borsato, D., Mauro, E. Thermal-oxidation study of biodiesel by proton nuclear magnetic Resonance (1H NMR). Fuel, Volume 274, 2020, 117833, ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2020.117833.
  • Malode, S. J.  Gaddi, S. A. M. Kamble, P. J. Nalwad, A. A. Muddapur, U. M. Shetti, N. P. Recent evolutionary trends in the production of biofuels. Materials Science for Energy Technologies, Volume 5, 2022, Pages 262-277, ISSN 2589-2991, DOI: https://doi.org/10.1016/j.mset.2022.04.001.
  • May, C.H., Dian, N.L.H.M., Liang, Y.C., Foon, C.S., Ngan, M.A., Hock, C.C. “Crystallization and Melting Behavior of Methyl of Palm Oil”. American Journal of Applied Science, 1859 -1863 (2006).
  • Miller, J. H. et al. Screening and evaluation of biomass upgrading strategies for sustainable transportation fuel production with biomass-derived volatile fatty acids. iScience, Volume 25, Issue 11, 2022, 105384, ISSN 2589-0042, https://doi.org/10.1016/j.isci.2022.105384.
  • Mota, C.J.A., Silva, P.H.R and Gonçalves, V.L.C. “Glycerol acetals as anti-freezing additives for biodiesel”. Bioresource Technology, 101, 6225–6229 (2010).
  • Mujtaba, M.A., Haeng Muk Cho, Masjuki, H.H., Kalam, M.A., Ong, H.C., Gul, M., Harith, M.H., Yusoff, M.N.A.M. Critical review on sesame seed oil and its methyl ester on cold flow and oxidation stability. Energy Reports, Volume 6, 2020, Pages 40-54, ISSN 2352-4847, https://doi.org/10.1016/j.egyr.2019.11.160.
  • Okolie, J. A., Awotoye, D., Tabat, M. E., Okoye, P. U., Epelle, E. I., Ogbaga, C. C., Güleç, F., Oboirien, B. Multi-criteria decision analysis for the evaluation and screening of sustainable aviation fuel production pathways. iScience, Volume 26, Issue 6, 2023, 106944, ISSN 2589-0042, https://doi.org/10.1016/j.isci.2023.106944.
  • Panchal, B., Chang, T., Qin, S., Sun, Y., Wang, J., Bian, K. Optimization of soybean oil transesterification using an ionic liquid and methanol for biodiesel synthesis. Energy Reports, Volume 6, Supplement 7, 2020, Pages 20-27, ISSN 2352-4847, DOI: https://doi.org/10.1016/j.egyr.2019.11.028.
  • Pandit, C. Srijoni Banerjee, S., Pandit, S., Lahiri, D., Kumar, V., Chaubey. K. K., Al-Balushi, R., Al-Bahry, S., Joshi, S. J. Recent advances and challenges in the utilization of nanomaterials in transesterification for biodiesel production. Heliyon, Volume 9, Issue 4, 2023, e15475, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2023.e15475.
  • Roger V. Marques, R. V., Guidoni, L. L. C., Araujo, T. R., Santos, M. A. Z., Pereira, C. M. P., Duval, E. H., Corrêa, L. B., Corrêa, E. K. Modification of bovine fatty waste with strains of Staphylococcus xylosus: Feedstock for biodiesel. Environmental Challenges, Volume 4, 2021, 100180, ISSN 2667-0100, https://doi.org/10.1016/j.envc.2021.100180.
  • Sánchez-Cárdenas et al. Esterification of oleic acid into biodiesel and use it as fuel in a diesel engine to determine its impact. Revista Mexicana de Ingeniería Química Vol. 21, No. 3(2022)., ISSN: 1665-2738. DOI: https://doi.org/10.24275/rmiq/Ener2969.
  • Saunders, L. (1994). Beverage creation. Design elements. Disponible en: www.foodproductdesign.com/archive/1994/0494DE.html.
  • Soares, S. Rocha, F. R.P. Green volumetric procedure for determining biodiesel content in diesel blends or mixtures with vegetable oils exploiting solubility differences in ethanol: water medium. Fuel, Volume 276, 2020, 118042, ISSN 0016-2361, https://doi.org/10.1016/j.fuel.2020.118042.
  • Sotoft, L. F., Rong, B. G., Christensen, V. K. and Norddah L, B. “Process simulation and economical evaluation of enzymatic biodiesel production plant”. Bioresource Technology, 101, 5266–5274 (2010).
  • Suppes, G.J., Goff, M.J and Dasari, M.A. “Interpreting freezing point depression of stearic acid and methyl stearate”. Fluid Phase Equilibria, 238, 149–156 (2005).
  • Torres, M., Jiménez-Osés, G., Mayoral, J.A ans Pires, E. “Fatty acid derivatives and their use as CFPP additives in biodiesel”. Bioresource Technology, 102, 2590–2594(2011).
  • Troy, A.S and Macmillan, D. “Vapor pressure and distillation of Methyl Esters of some Fatty Acids”. Ind. Eng. Chem., 44, 172–175 (1952).
  • Xue,Y., Zhao,W., Ma,P.,Zhao, Z., Xu,G., Yang,C., Chen, H., Lin, H and Han, S. “Ternary blends of biodiesel with petro-diesel and diesel from direct coal liquefaction for improving the cold flow properties of waste cooking oil biodiesel”. Fuel, 177, 46–52(2016).
  • Wang, M., Nie, K., Hao Cao, H., Deng, L., Fang Wang, F and Tan, T. “Biodiesel production by combined fatty acids separation and subsequently enzymatic esterification to improve the low-temperature properties”. Bioresource Technology, 174, 302–305(2014).
  • West, A. H., Posarac, D. and Ellis, N. “Assessment of biodiesel production process using HYSYS”. Bioresource Technology, 99, 6587–6601(2008).
  • Yeong, S. P., Chan, Y. S., Law, M. C., Ling, J. K. U. Improving cold flow properties of palm fatty acid distillate biodiesel through vacuum distillation. Journal of Bioresources and Bioproducts, Volume 7, Issue 1, 2022, Pages 43-51, ISSN 2369-9698, https://doi.org/10.1016/j.jobab.2021.09.002.
  • Yusuff, A. S., Dada, T., Olateju, I. I., Azeez, T. M., Azeez, S. O. Experimental investigation of the influence of methyl, ethyl, and methyl-ethyl ester blends of used cooking oil on engine performances and emissions. Energy Conversion and Management: X, Volume 17, 2023, 100346, ISSN 2590-1745, https://doi.org/10.1016/j.ecmx.2023.100346.
  • Zarrinmehr, M. J., Daneshvar, E., Nigam, S., Gopinath, K. P., Biswas, J. K., Kwon, E. E., Wang, H., Farhadian, O. Bhatnagar, A. The effect of solvent polarity and extraction conditions on the microalgal lipids yield, fatty acids profile, and biodiesel properties. Bioresource Technology, Volume 344, Part B, 2022, 126303, ISSN 0960-8524, https://doi.org/10.1016/j.biortech.2021.126303.