- Abbott, A. P., Ballantyne, A., Harris, R. C., Juma, J. A., & Ryder, K. S. (2015). A Comparative Study of Nickel Electrodeposition Using Deep Eutectic Solvents and Aqueous Solutions. Electrochimica Acta, 176, 718–726. https://doi.org/10.1016/j.electacta.2015.07.051
- Abyaneh, M. Y., Visscher, W., & Barendrecht, E. (1983). Study of the electrocrystallization of nickel by ellipsometry. Electrochimica Acta, 28(3), 285–291. https://doi.org/10.1016/0013-4686(83)85124-X
- Alemu, T., Assresahegn, B. D., & Soreta, T. R. (2014). Tuning the Initial Electronucleation Mechanism of Palladium on Glassy Carbon Electrode. Portugaliae Electrochimica Acta, 32(1), 21–33. https://doi.org/10.4152/pea.201401021
- Armstrong, R. D., & Harrison, J. A. (1969). Two-Dimensional Nucleation in Electrocrystallization, 236(1967), 1967–1970.
- Baig, N., Kammakakam, I., Falath, W., & Kammakakam, I. (2021). Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2(6), 1821–1871. https://doi.org/10.1039/d0ma00807a
- Bernal Lopez, M., & Ustarroz, J. (2021). Electrodeposition of nanostructured catalysts for electrochemical energy conversion: Current trends and innovative strategies. Current Opinion in Electrochemistry, 27. https://doi.org/10.1016/j.coelec.2021.100688
- Berzins, T., & Delahay, P. (1953). Oscillographic Polarographic Waves for the Reversible Deposition of Metals on Solid Electrodes. Journal of the American Chemical Society, 75(3), 555–559. https://doi.org/10.1021/ja01099a013
- Cano, C., Romero, E., & Cubillos, G. I. (2023). Improvement of alkyd paints with NiO-ZrO2Y coatings on hot-rolled steel. Revista Mexicana de Ingeniería Química, 22(3), 97–104. https://doi.org/10.24275/rmiq/Proc231
- Cheng, Q., Wu, C., Chen, J., Zhou, Y., & Wu, K. (2011). Electrochemical tuning the activity of nickel nanoparticle and application in sensitive detection of chemical oxygen demand. Journal of Physical Chemistry C, 115(46), 22845–22850. https://doi.org/10.1021/JP207442U/ASSET/IMAGES/MEDIUM/JP-2011-07442U_0009.GIF
- Cuevas-González, B. G., Monterrubio-Badillo, C., & Cuenca-Álvarez, R. (2018). ELECTRODEPOSITION OF NICKEL IN AN ACIDIC MEDIUM FROM POWDER OF BATTERIES MADE OF NICKEL METAL HYDRIDE (NiMH). Revista Mexicana de Ingeniería Química ELECTRODEPOSITION, 17(2), 603–612. https://doi.org/10.24275/10.24275/uam/izt/dcbi/revmexingquim/2018v17n2/Cuevas
- Danaee, I. (2013). 2D–3D nucleation and growth of palladium on graphite electrode. Journal of Industrial and Engineering Chemistry, 19(3), 1008–1013. https://doi.org/10.1016/J.JIEC.2012.11.024
- Dean, J, A. (1999). Handbook of chemistry. Soil Science (Fifteenth). New York: McGraw-Hill, Inc. https://doi.org/10.1016/S0016-0032(40)90947-4
- Di Bari, G. A. (2011). Electrodeposition of Nickel. Modern Electroplating: Fifth Edition, 79–114. https://doi.org/10.1002/9780470602638.CH3
- Dubpernell, G. (2006). Plating & Surface Finishing.
- Francis, S. (2023). Nickel plating handbook KNOWLEDGE FOR A BRIGHTER FUTURE. (Nickel Institute, Ed.) (2022nd ed.). Toronto: Nickel Institute. Retrieved from https://nickelinstitute.org/media/lxxh1zwr/2023-nickelplatinghandbooka5_printablepdf.pdf
- Group, S. E. (1985a). Electrocristallization. In R. Greef, R. Peat, L. M. Peter, D. Pletcher, & J. Robinson (Eds.), Instrumental Methods in Electrochemistry (1st ed., Vol. 1, pp. 283–316). Chichester: Woodhead Publishing. Retrieved from http://www.sciencedirect.com:5070/book/9781898563808/instrumental-methods-in-electrochemistry
- Group, S. E. (1985b). Electrocristallization. In R. Greef, R. Peat, L. M. Peter, D. Pletcher, & J. Robinson (Eds.), Instrumental Methods in Electrochemistry (1st ed., Vol. 1, pp. 283–316). Chichester: Woodhead Publishing.
- Grujicic, D., & Pesic, B. (2006). Electrochemical and AFM study of nickel nucleation mechanisms on vitreous carbon from ammonium sulfate solutions. Electrochimica Acta, 51(13), 2678–2690. https://doi.org/10.1016/J.ELECTACTA.2005.08.017
- Haghighat, S., & Dawlaty, J. M. (2016). pH Dependence of the Electron-Transfer Coefficient: Comparing a Model to Experiment for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 120(50), 28489–28496. https://doi.org/10.1021/acs.jpcc.6b10602
- Hölzle, M. H., Retter, U., & Kolb, D. M. (1994). The kinetics of structural changes in Cu adlayers on Au(111). Journal of Electroanalytical Chemistry, 371(1–2), 101–109. https://doi.org/10.1016/0022-0728(93)03235-H
- Huo, L., Jin, C., Jiang, K., Bao, Q., Hu, Z., & Chu, J. (2022). Applications of Nickel-Based Electrocatalysts for Hydrogen Evolution Reaction. Advanced Energy and Sustainability Research, 3(4), 2100189. https://doi.org/10.1002/AESR.202100189
- Jamil, Z., Ruiz-Trejo, E., & Brandon, N. P. (2017). Nickel Electrodeposition on Silver for the Development of Solid Oxide Fuel Cell Anodes and Catalytic Membranes. Journal of The Electrochemical Society, 164(4), D210–D217. https://doi.org/10.1149/2.1081704jes
- Jin, C., Zeng, A., Cho, S. J., Nam, S. H., Seo, H. O., Kim, Y. D., & Boo, J. H. (2012). Effect of deposition time and potential on the nucleation and growth of nickel nano particles on nitrogen doped diamond-like carbon thin film. Thin Solid Films, 521, 158–162. https://doi.org/10.1016/J.TSF.2011.12.087
- Kireev, S. Y., & Frolov, A. V. (2021). Electrodeposition of Nickel Coatings from Acetate-chloride Electrolyte using Galvanostatic Pulse Electrolysis. Protection of Metals and Physical Chemistry of Surfaces, 57(7), 1375–1379. https://doi.org/10.1134/S2070205121070078/METRICS
- Kumari, S., & Sarkar, L. (2021). A Review on Nanoparticles: Structure, Classification, Synthesis & Applications. Journal of Scientific Research, 65(08), 42–46. https://doi.org/10.37398/jsr.2021.650809
- Li, G. R., Xu, H., Lu, X. F., Feng, J. X., Tong, Y. X., & Su, C. Y. (2013). Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage. Nanoscale, 5(10), 4056–4069. https://doi.org/10.1039/C3NR00607G
- Mernissi Cherigui, E. A., Sentosun, K., Bouckenooge, P., Vanrompay, H., Bals, S., Terryn, H., & Ustarroz, J. (2017). Comprehensive Study of the Electrodeposition of Nickel Nanostructures from Deep Eutectic Solvents: Self-Limiting Growth by Electrolysis of Residual Water. Journal of Physical Chemistry C, 121(17), 9337–9347. https://doi.org/10.1021/acs.jpcc.7b01104
- Milchev, A. (1991). Electrochemical phase formation on a foreign substrate — basic theoretical concepts and some experimental results Electrochemical phase formation on a foreign substrate-basic theoretical concepts and some experimental results. Contemporary Physics, 32(5), 321–332. https://doi.org/10.1080/00107519108223705
- Milchev, A. (2002). Electrocrystallization. Fundamentals of Nucleation and Growth. Electrocrystallization (1st ed., Vol. 1). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/B113784
- Mostany, J., Mozota, J., & Scharifker, B. R. (1984). Three-dimensional nucleation with diffusion controlled growth: Part II. The nucleation of lead on vitreous carbon. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 177(1–2), 25–37. https://doi.org/10.1016/0022-0728(84)80208-9
- Nečas, D., & Klapetek, P. (2012). Gwyddion: An open-source software for SPM data analysis. Central European Journal of Physics, 10(1), 181–188. https://doi.org/10.2478/S11534-011-0096-2/MACHINEREADABLECITATION/RIS
- Ni, X., Zhang, Y., Wang, C., Hong, Y., Chen, Y., Su, Y., … Du, Y. (2022). Mechanism and Application of Nickel NanoCone by Electrodeposition on a Flexible Substrate Abstract :, 28(7), 1–11. https://doi.org/10.13208/j.electrochem.2213008
- Noel, M., & Vasu, K. I. (1990). Cyclic Voltammetry and the Frontiers of Electrochemistry. (Aspect publications, Ed.). London: Aspect. Retrieved from https://books.google.com.mx/books?id=L4IvAQAAIAAJ
- Palomar-Pardavé, M., Scharifker, B. R., Arce, E. M., & Romero-Romo, M. (2005). Nucleation and diffusion-controlled growth of electroactive centers: Reduction of protons during cobalt electrodeposition. Electrochimica Acta, 50(24), 4736–4745. https://doi.org/10.1016/J.ELECTACTA.2005.03.004
- Putri, Y. M. T. A., Syauqi, M. I., Rahmawati, I., Aliyah, A., Sanjaya, A. R., & Ivandini, T. A. (2024). Advancements in Ni-based Catalysts for Direct Urea Fuel Cells: A Comprehensive Review. ChemElectroChem, 11(5), e202300637. https://doi.org/10.1002/CELC.202300637
- Rehman, Z. U., Nawaz, M., Ullah, H., Uddin, I., Shad, S., Eldin, E., … Javed, M. S. (2022). Synthesis and Characterization of Ni Nanoparticles via the Microemulsion Technique and Its Applications for Energy Storage Devices. Materials 2023, Vol. 16, Page 325, 16(1), 325. https://doi.org/10.3390/MA16010325
- Rios-Reyes, C. H., Mendoza-Huizar, L. H., & Rivera, M. (2010). Electrochemical kinetic study about cobalt electrodeposition onto GCE and HOPG substrates from sulfate sodium solutions. Journal of Solid State Electrochemistry 2009 14:4, 14(4), 659–668. https://doi.org/10.1007/S10008-009-0816-3
- Ruiz-Vela, J. I., Rodríguez-Vázquez, E. E., Gudiño-Pérez, Y., Sánchez-Ramírez, R., & Montes-Rodríguez, J. J. (2023). Effect of complexing/buffering agent on the characteristics of a high phosphorous electroless nickel coating. Revista Mexicana de Ingeniería Química, 22(2), 1–10. https://doi.org/10.24275/rmiq/Proc2331
- Scharifker, B., & Hills, G. (1983). Theoretical and experimental studies of multiple nucleation. Electrochimica Acta, 28(7), 879–889. https://doi.org/10.1016/0013-4686(83)85163-9
- Serruya, A., Mostany, J., & Scharifker, B. R. (1999). The kinetics of mercury nucleation from Hg22+ and Hg2+ solutions on vitreous carbon electrodes. Journal of Electroanalytical Chemistry, 464(1), 39–47. https://doi.org/10.1016/S0022-0728(98)00464-1
- Skibińska, K., Semeniuk, S., Kutyła, D., Jędraczka, A., & Żabiński, P. (2021). Study on Synthesis and Modification of Conical Ni Structures by One-Step Method, 66, 861–869. https://doi.org/10.24425/amm.2021.136391
- Sotskaya, N. V., Sapronova, L. V., & Dolgikh, O. V. (2014). Kinetics of the nucleation and growth of nickel particles in α-alanine-containing electrolytes. Protection of Metals and Physical Chemistry of Surfaces, 50(1), 22–26. https://doi.org/10.1134/S2070205114010134
- Sudha, P. N., Sangeetha, K., Vijayalakshmi, K., & Barhoum, A. (2021). Chapter 12 - Nanomaterials history, classification, unique properties, production and market. Emerging Applications of Nanoparticles and Architecture Nanostructures. Elsevier Inc. https://doi.org/10.1016/B978-0-323-51254-1/00012-9
- Szczyglewska, P., Feliczak-Guzik, A., & Nowak, I. (2023). Nanotechnology–General Aspects: A Chemical Reduction Approach to the Synthesis of Nanoparticles. Molecules, 28(13). https://doi.org/10.3390/molecules28134932
- Tafel, J. (1905). Julius Tafel. Society, Journal of the Chemical, 88, 668–676.
- Torabi, M., & Dolati, A. (2010). A kinetic study on the electrodeposition of nickel nanostructure and its electrocatalytic activity for hydrogen evolution reaction. Journal of Applied Electrochemistry, 40(11), 1941–1947. https://doi.org/10.1007/S10800-010-0170-2/METRICS
- Vij, V., Sultan, S., Harzandi, A. M., Meena, A., Tiwari, J. N., Lee, W. G., … Kim, K. S. (2017). Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catalysis, 7(10), 7196–7225. https://doi.org/10.1021/acscatal.7b01800
- Wang, Y., Williamson, N., Dawson, R., & Bimbo, N. (2023). Electrodeposition of nickel–iron on stainless steel as an efficient electrocatalyst coating for the oxygen evolution reaction in alkaline conditions. Journal of Applied Electrochemistry, 53(5), 877–892. https://doi.org/10.1007/S10800-022-01817-4/FIGURES/8
- Whiston, M. M., Bilec, M. M., & Schaefer, L. A. (2015). Influence of the charge double layer on solid oxide fuel cell stack behavior. Journal of Power Sources, 293, 767–777. https://doi.org/10.1016/j.jpowsour.2015.05.085
- Zheng, G. Q., Cao, H. Z., & Zheng, L. F. (2007). Influence of ammonia concentration on anodic deposition of nickel oxide. Journal of Applied Electrochemistry, 37(7), 799–803. https://doi.org/10.1007/S10800-007-9313-5/METRICS
- Zhu, Y. L., Katayama, Y., & Miura, T. (2014). Effects of coumarin and saccharin on electrodeposition of Ni from a hydrophobic ionic liquid. Electrochimica Acta, 123, 303–308. https://doi.org/10.1016/J.ELECTACTA.2013.12.181
|