Vol. 24, No. 1 (2025), Mat24409 https://doi.org/10.24275/rmiq/Mat24409


Nickel electrodeposition from an aqueous solution of ammonium chloride onto a Highly Oriented Pyrolytic Graphite (HOPG) electrode: A kinetic and morphological study


 

Authors

L.H. Mendoza-Huizar


Abstract

In this study, an electrochemical investigation was conducted on the electrodeposition of nickel onto a Highly Oriented Pyrolytic Graphite (HOPG) electrode from an ammoniacal solution containing 0.01 M NiCl2 and 0.1 M NH4Cl. The potential range in which nickel can be electrodeposited was determined by a cyclic voltammetric study, which also made it possible to assess the charge transfer coefficients related to the reduction and oxidation processes. A kinetic analysis of the nucleation and growth of nickel was also carried out using chronoamperometry. The current density transients (CDTs) derived from this technique were modeled through a kinetic mechanism involving three distinct contributions: (a) two-dimensional instantaneous nucleation, (b) three-dimensional nucleation limited by mass transfer, and (c) a proton reduction process. Nonlinear fitting of the CDTs indicated that both the nucleation rate (A) and the number of active nucleation sites (N0) increased with the applied potential. Furthermore, the analysis of the contributions to the CDTs showed that, on average, 7.9% of the applied electric charge is consumed by the nucleation and growth process, while the remainder is used for proton reduction. The average Gibbs free energy (ΔG) calculated for the formation of a stable nucleus was 1.2×10-20 J nucleus-1. Additionally, Scanning Electron Microscopy (SEM) analysis revealed the presence of spherical nickel particles dispersed on the surface, with diameters ranging from 60 nm to 235 nm.


Keywords

nickel, electrodeposition, kinetic, SEM.


References

  • Abbott, A. P., Ballantyne, A., Harris, R. C., Juma, J. A., & Ryder, K. S. (2015). A Comparative Study of Nickel Electrodeposition Using Deep Eutectic Solvents and Aqueous Solutions. Electrochimica Acta, 176, 718–726. https://doi.org/10.1016/j.electacta.2015.07.051
  • Abyaneh, M. Y., Visscher, W., & Barendrecht, E. (1983). Study of the electrocrystallization of nickel by ellipsometry. Electrochimica Acta, 28(3), 285–291. https://doi.org/10.1016/0013-4686(83)85124-X
  • Alemu, T., Assresahegn, B. D., & Soreta, T. R. (2014). Tuning the Initial Electronucleation Mechanism of Palladium on Glassy Carbon Electrode. Portugaliae Electrochimica Acta, 32(1), 21–33. https://doi.org/10.4152/pea.201401021
  • Armstrong, R. D., & Harrison, J. A. (1969). Two-Dimensional Nucleation in Electrocrystallization, 236(1967), 1967–1970.
  • Baig, N., Kammakakam, I., Falath, W., & Kammakakam, I. (2021). Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2(6), 1821–1871. https://doi.org/10.1039/d0ma00807a
  • Bernal Lopez, M., & Ustarroz, J. (2021). Electrodeposition of nanostructured catalysts for electrochemical energy conversion: Current trends and innovative strategies. Current Opinion in Electrochemistry, 27. https://doi.org/10.1016/j.coelec.2021.100688
  • Berzins, T., & Delahay, P. (1953). Oscillographic Polarographic Waves for the Reversible Deposition of Metals on Solid Electrodes. Journal of the American Chemical Society, 75(3), 555–559. https://doi.org/10.1021/ja01099a013
  • Cano, C., Romero, E., & Cubillos, G. I. (2023). Improvement of alkyd paints with NiO-ZrO2Y coatings on hot-rolled steel. Revista Mexicana de Ingeniería Química, 22(3), 97–104. https://doi.org/10.24275/rmiq/Proc231
  • Cheng, Q., Wu, C., Chen, J., Zhou, Y., & Wu, K. (2011). Electrochemical tuning the activity of nickel nanoparticle and application in sensitive detection of chemical oxygen demand. Journal of Physical Chemistry C, 115(46), 22845–22850. https://doi.org/10.1021/JP207442U/ASSET/IMAGES/MEDIUM/JP-2011-07442U_0009.GIF
  • Cuevas-González, B. G., Monterrubio-Badillo, C., & Cuenca-Álvarez, R. (2018). ELECTRODEPOSITION OF NICKEL IN AN ACIDIC MEDIUM FROM POWDER OF BATTERIES MADE OF NICKEL METAL HYDRIDE (NiMH). Revista Mexicana de Ingeniería Química ELECTRODEPOSITION, 17(2), 603–612. https://doi.org/10.24275/10.24275/uam/izt/dcbi/revmexingquim/2018v17n2/Cuevas
  • Danaee, I. (2013). 2D–3D nucleation and growth of palladium on graphite electrode. Journal of Industrial and Engineering Chemistry, 19(3), 1008–1013. https://doi.org/10.1016/J.JIEC.2012.11.024
  • Dean, J, A. (1999). Handbook of chemistry. Soil Science (Fifteenth). New York: McGraw-Hill, Inc. https://doi.org/10.1016/S0016-0032(40)90947-4
  • Di Bari, G. A. (2011). Electrodeposition of Nickel. Modern Electroplating: Fifth Edition, 79–114. https://doi.org/10.1002/9780470602638.CH3
  • Dubpernell, G. (2006). Plating & Surface Finishing.
  • Francis, S. (2023). Nickel plating handbook KNOWLEDGE FOR A BRIGHTER FUTURE. (Nickel Institute, Ed.) (2022nd ed.). Toronto: Nickel Institute. Retrieved from https://nickelinstitute.org/media/lxxh1zwr/2023-nickelplatinghandbooka5_printablepdf.pdf
  • Group, S. E. (1985a). Electrocristallization. In R. Greef, R. Peat, L. M. Peter, D. Pletcher, & J. Robinson (Eds.), Instrumental Methods in Electrochemistry (1st ed., Vol. 1, pp. 283–316). Chichester: Woodhead Publishing. Retrieved from http://www.sciencedirect.com:5070/book/9781898563808/instrumental-methods-in-electrochemistry
  • Group, S. E. (1985b). Electrocristallization. In R. Greef, R. Peat, L. M. Peter, D. Pletcher, & J. Robinson (Eds.), Instrumental Methods in Electrochemistry (1st ed., Vol. 1, pp. 283–316). Chichester: Woodhead Publishing.
  • Grujicic, D., & Pesic, B. (2006). Electrochemical and AFM study of nickel nucleation mechanisms on vitreous carbon from ammonium sulfate solutions. Electrochimica Acta, 51(13), 2678–2690. https://doi.org/10.1016/J.ELECTACTA.2005.08.017
  • Haghighat, S., & Dawlaty, J. M. (2016). pH Dependence of the Electron-Transfer Coefficient: Comparing a Model to Experiment for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 120(50), 28489–28496. https://doi.org/10.1021/acs.jpcc.6b10602
  • Hölzle, M. H., Retter, U., & Kolb, D. M. (1994). The kinetics of structural changes in Cu adlayers on Au(111). Journal of Electroanalytical Chemistry, 371(1–2), 101–109. https://doi.org/10.1016/0022-0728(93)03235-H
  • Huo, L., Jin, C., Jiang, K., Bao, Q., Hu, Z., & Chu, J. (2022). Applications of Nickel-Based Electrocatalysts for Hydrogen Evolution Reaction. Advanced Energy and Sustainability Research, 3(4), 2100189. https://doi.org/10.1002/AESR.202100189
  • Jamil, Z., Ruiz-Trejo, E., & Brandon, N. P. (2017). Nickel Electrodeposition on Silver for the Development of Solid Oxide Fuel Cell Anodes and Catalytic Membranes. Journal of The Electrochemical Society, 164(4), D210–D217. https://doi.org/10.1149/2.1081704jes
  • Jin, C., Zeng, A., Cho, S. J., Nam, S. H., Seo, H. O., Kim, Y. D., & Boo, J. H. (2012). Effect of deposition time and potential on the nucleation and growth of nickel nano particles on nitrogen doped diamond-like carbon thin film. Thin Solid Films, 521, 158–162. https://doi.org/10.1016/J.TSF.2011.12.087
  • Kireev, S. Y., & Frolov, A. V. (2021). Electrodeposition of Nickel Coatings from Acetate-chloride Electrolyte using Galvanostatic Pulse Electrolysis. Protection of Metals and Physical Chemistry of Surfaces, 57(7), 1375–1379. https://doi.org/10.1134/S2070205121070078/METRICS
  • Kumari, S., & Sarkar, L. (2021). A Review on Nanoparticles: Structure, Classification, Synthesis & Applications. Journal of Scientific Research, 65(08), 42–46. https://doi.org/10.37398/jsr.2021.650809
  • Li, G. R., Xu, H., Lu, X. F., Feng, J. X., Tong, Y. X., & Su, C. Y. (2013). Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage. Nanoscale, 5(10), 4056–4069. https://doi.org/10.1039/C3NR00607G
  • Mernissi Cherigui, E. A., Sentosun, K., Bouckenooge, P., Vanrompay, H., Bals, S., Terryn, H., & Ustarroz, J. (2017). Comprehensive Study of the Electrodeposition of Nickel Nanostructures from Deep Eutectic Solvents: Self-Limiting Growth by Electrolysis of Residual Water. Journal of Physical Chemistry C, 121(17), 9337–9347. https://doi.org/10.1021/acs.jpcc.7b01104
  • Milchev, A. (1991). Electrochemical phase formation on a foreign substrate — basic theoretical concepts and some experimental results Electrochemical phase formation on a foreign substrate-basic theoretical concepts and some experimental results. Contemporary Physics, 32(5), 321–332. https://doi.org/10.1080/00107519108223705
  • Milchev, A. (2002). Electrocrystallization. Fundamentals of Nucleation and Growth. Electrocrystallization (1st ed., Vol. 1). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/B113784
  • Mostany, J., Mozota, J., & Scharifker, B. R. (1984). Three-dimensional nucleation with diffusion controlled growth: Part II. The nucleation of lead on vitreous carbon. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 177(1–2), 25–37. https://doi.org/10.1016/0022-0728(84)80208-9
  • Nečas, D., & Klapetek, P. (2012). Gwyddion: An open-source software for SPM data analysis. Central European Journal of Physics, 10(1), 181–188. https://doi.org/10.2478/S11534-011-0096-2/MACHINEREADABLECITATION/RIS
  • Ni, X., Zhang, Y., Wang, C., Hong, Y., Chen, Y., Su, Y., … Du, Y. (2022). Mechanism and Application of Nickel NanoCone by Electrodeposition on a Flexible Substrate Abstract :, 28(7), 1–11. https://doi.org/10.13208/j.electrochem.2213008
  • Noel, M., & Vasu, K. I. (1990). Cyclic Voltammetry and the Frontiers of Electrochemistry. (Aspect publications, Ed.). London: Aspect. Retrieved from https://books.google.com.mx/books?id=L4IvAQAAIAAJ
  • Palomar-Pardavé, M., Scharifker, B. R., Arce, E. M., & Romero-Romo, M. (2005). Nucleation and diffusion-controlled growth of electroactive centers: Reduction of protons during cobalt electrodeposition. Electrochimica Acta, 50(24), 4736–4745. https://doi.org/10.1016/J.ELECTACTA.2005.03.004
  • Putri, Y. M. T. A., Syauqi, M. I., Rahmawati, I., Aliyah, A., Sanjaya, A. R., & Ivandini, T. A. (2024). Advancements in Ni-based Catalysts for Direct Urea Fuel Cells: A Comprehensive Review. ChemElectroChem, 11(5), e202300637. https://doi.org/10.1002/CELC.202300637
  • Rehman, Z. U., Nawaz, M., Ullah, H., Uddin, I., Shad, S., Eldin, E., … Javed, M. S. (2022). Synthesis and Characterization of Ni Nanoparticles via the Microemulsion Technique and Its Applications for Energy Storage Devices. Materials 2023, Vol. 16, Page 325, 16(1), 325. https://doi.org/10.3390/MA16010325
  • Rios-Reyes, C. H., Mendoza-Huizar, L. H., & Rivera, M. (2010). Electrochemical kinetic study about cobalt electrodeposition onto GCE and HOPG substrates from sulfate sodium solutions. Journal of Solid State Electrochemistry 2009 14:4, 14(4), 659–668. https://doi.org/10.1007/S10008-009-0816-3
  • Ruiz-Vela, J. I., Rodríguez-Vázquez, E. E., Gudiño-Pérez, Y., Sánchez-Ramírez, R., & Montes-Rodríguez, J. J. (2023). Effect of complexing/buffering agent on the characteristics of a high phosphorous electroless nickel coating. Revista Mexicana de Ingeniería Química, 22(2), 1–10. https://doi.org/10.24275/rmiq/Proc2331
  • Scharifker, B., & Hills, G. (1983). Theoretical and experimental studies of multiple nucleation. Electrochimica Acta, 28(7), 879–889. https://doi.org/10.1016/0013-4686(83)85163-9
  • Serruya, A., Mostany, J., & Scharifker, B. R. (1999). The kinetics of mercury nucleation from Hg22+ and Hg2+ solutions on vitreous carbon electrodes. Journal of Electroanalytical Chemistry, 464(1), 39–47. https://doi.org/10.1016/S0022-0728(98)00464-1
  • Skibińska, K., Semeniuk, S., Kutyła, D., Jędraczka, A., & Żabiński, P. (2021). Study on Synthesis and Modification of Conical Ni Structures by One-Step Method, 66, 861–869. https://doi.org/10.24425/amm.2021.136391
  • Sotskaya, N. V., Sapronova, L. V., & Dolgikh, O. V. (2014). Kinetics of the nucleation and growth of nickel particles in α-alanine-containing electrolytes. Protection of Metals and Physical Chemistry of Surfaces, 50(1), 22–26. https://doi.org/10.1134/S2070205114010134
  • Sudha, P. N., Sangeetha, K., Vijayalakshmi, K., & Barhoum, A. (2021). Chapter 12 - Nanomaterials history, classification, unique properties, production and market. Emerging Applications of Nanoparticles and Architecture Nanostructures. Elsevier Inc. https://doi.org/10.1016/B978-0-323-51254-1/00012-9
  • Szczyglewska, P., Feliczak-Guzik, A., & Nowak, I. (2023). Nanotechnology–General Aspects: A Chemical Reduction Approach to the Synthesis of Nanoparticles. Molecules, 28(13). https://doi.org/10.3390/molecules28134932
  • Tafel, J. (1905). Julius Tafel. Society, Journal of the Chemical, 88, 668–676.
  • Torabi, M., & Dolati, A. (2010). A kinetic study on the electrodeposition of nickel nanostructure and its electrocatalytic activity for hydrogen evolution reaction. Journal of Applied Electrochemistry, 40(11), 1941–1947. https://doi.org/10.1007/S10800-010-0170-2/METRICS
  • Vij, V., Sultan, S., Harzandi, A. M., Meena, A., Tiwari, J. N., Lee, W. G., … Kim, K. S. (2017). Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catalysis, 7(10), 7196–7225. https://doi.org/10.1021/acscatal.7b01800
  • Wang, Y., Williamson, N., Dawson, R., & Bimbo, N. (2023). Electrodeposition of nickel–iron on stainless steel as an efficient electrocatalyst coating for the oxygen evolution reaction in alkaline conditions. Journal of Applied Electrochemistry, 53(5), 877–892. https://doi.org/10.1007/S10800-022-01817-4/FIGURES/8
  • Whiston, M. M., Bilec, M. M., & Schaefer, L. A. (2015). Influence of the charge double layer on solid oxide fuel cell stack behavior. Journal of Power Sources, 293, 767–777. https://doi.org/10.1016/j.jpowsour.2015.05.085
  • Zheng, G. Q., Cao, H. Z., & Zheng, L. F. (2007). Influence of ammonia concentration on anodic deposition of nickel oxide. Journal of Applied Electrochemistry, 37(7), 799–803. https://doi.org/10.1007/S10800-007-9313-5/METRICS
  • Zhu, Y. L., Katayama, Y., & Miura, T. (2014). Effects of coumarin and saccharin on electrodeposition of Ni from a hydrophobic ionic liquid. Electrochimica Acta, 123, 303–308. https://doi.org/10.1016/J.ELECTACTA.2013.12.181