Vol. 24, No. 1 (2025), Proc24389 https://doi.org/10.24275/rmiq/Proc24389


Enhancing heavy crude oil recovery: injection of FeNi nanoparticles with steam into porous medium


 

Authors

C.V. Birbal, S. Martinez, Y. Castro


Abstract

The study focuses on utilizing nanoparticles in heavy crude oil recovery processes, particularly in steam injection operations. Various catalytic reactions, including aquathermolysis, water-gas shift, and cracking, were explored to enhance oil recovery efficiency. Bimetallic nanoparticles (Fe/Ni) of 14 nm size were synthesized for this purpose. The study examined a heavy crude oil of 8°API under steam injection conditions. Additionally, the impact of nanoparticles on recovery factor, water production, SARA fractions, and gaseous products was analyzed. The inclusion of Ni-Fe nanoparticles in the system exhibits promising results in reducing viscosity and enhancing recovery factors. Notably, a decrease in viscosity by 86% and an increase in recovery factor by 72.94% were achieved within the porous medium. Water production was better controlled in the presence of nanoparticles, potentially due to their retention in the sand mediated by Van der Waals forces. The interactions between methane, water, and petroleum molecules in the presence of nickel and iron nanoparticles led to the production of smaller hydrocarbons. Furthermore, catalytic cracking, desulfurization, and hydrogenation reactions were observed to enhance product quality in terms of viscosity and sulfur content. The experimental findings underscore the impact of varying injection cycles on recovery percentages, highlighting the significance of hydrogen in molecular transformations. Overall, the study offers valuable insights into the intricacies of nanoparticle-assisted heavy oil recovery, showcasing potential opportunities for optimizing recovery processes within the oil industry.


Keywords

nanoparticles; recovery factor; steam injection; downhole upgrading; enhanced oil recovery.


References

  • Ahmadi M., Chen Z. (2020). Challenges and future of chemical assisted heavy oil recovery processes. Advances in Colloid and Interface Science275, 1-98. https://doi.org/10.1016/j.cis.2019.102081
  • Alvarez-Amparan M., Cedeño-Caero L. (2012). Desulfuración oxidativa de dibenzotiofenos con VOX/ZrO2-Al2O3. Revista Mexicana de Ingeniería Química 11, 431-438.
  • Alnarabiji M., Husein M. (2020). Application of bare nanoparticle-based nanofluids in enhanced oil recovery. Fuel 267, 1-12. https://doi.org/10.1016/j.fuel.2020.117262
  • Alarbah A., Shirif E., Jia N., Bumraiwha H. (2021). A New Approach Utilizing Liquid Catalyst for Improving Heavy Oil Recovery. Journal of Energy Resources Technology, 143-150. https://doi.org/10.1115/1.4050693
  • Araujo-Ferrer S., Morillo J., Crespo V., Noguera G. (2018). Screening study of various catalysts systems for a hydrocracking/hydrotreating of vacuum residue oil: Merey. Revista Mexicana de Ingeniería Química 17, 261-268.
  • Birbal C., Martínez S., Castro Y., Sánchez D. (2023). Mejoramiento de crudos pesados a fondo de pozo con nanopartículas metálicas de Fe/Ni a condiciones de inyección de vapor. Revista Ciencia e Ingeniería 44, 275-286.
  • Castro Y., Viloria A. (2024). New Trends for Hydrogen Sulfide Scavenging Using Natural Compounds as Biogenic Amines. ACS Omega 9, 10671−10679. https://doi.org/10.1021/acsomega.3c09235
  • Cheraghian G., Rostami S., Afrand M. (2020). Nanotechnology in Enhanced Oil Recovery. Processes 8, 1-17. https://doi.org/10.3390/pr8091073
  • Clark P., Hyne J., Tyrer J. (1983). Chemistry of organosulphur compound types occurring in heavy oil sands: 1. High temperature hydrolysis and thermolysis of tetrahydrothiophene in relation to steam stimulation processes. Fuel 62, 959-962. https://doi.org/10.1016/0016-2361(83)90170-9
  • Davudov R., Monghanloo R. (2017). A systematic comparison of various upgrading techniques for heavy oil. Journal of Petroleum Science and Engineering 156, 623-632. http://10.1016/j.petrol.2017.06.040
  • Divandar H., Amiri-Ramsheh B., Zabihi R. (2023). Steam flooding (steam drive). In:  Enhanced Oil Recovery Series, Thermal Methods, (J. The. Met. Enh. Oil Rec. Ser). 47-70.
  • Farouq S. M. (1973). Well stimulation by downhole thermal methods. Pet. Eng, United States.
  • Foroozesh J., Kumar S. (2020). Nanoparticles behaviors in porous media: Application to enhanced oil recovery. Journal of Molecular Liquids 316, 1-20. https://doi.org/10.1016/j.molliq.2020.113876
  • Gaya U. (2021). Recent Approaches, Catalysts and Formulations for Enhanced Recovery of Heavy Crude Oils. Periodica Polytechnica Chemical Engineering 65, 462-475. https://doi.org/10.3311/PPch.17236
  • Gold T., Gordon B., Bilson E., Patnaik R. (1986). Experimental study of the reaction of methane with petroleum hydrocarbons in geological conditions. Geochimica et Cosmochimica 50, 2411-2418. https://doi.org/10.1016/0016-7037(86)90023-2
  • Grases, F., Costa, B., Söhnel, O. (2000). Cristalización en Disolución, Conceptos Básicos. Editorial Reverté, México.
  • Hawk C., Goldek P., Storch H., Fieldn A. (1932). Conversion of Methane to Carbon Monoxide and Hydrogen, Industrial and engineering chemistry 24, 23-30.
  • Hassan S. (2024). Nanotechnology Applications in Enhanced Oil Recovery (EOR). International Journal of Scientific Research and Management 12, 135-143.https://doi.org/10.18535/ijsrm/v12i06.c03
  • Hyne J., Clark P., Clarke R., Koo J. (1982). Aquathermolysis of Heavy Oils. Revista Técnica Intevep 2:2, 87-100.
  • Huirache-Acuña R., Albiter A., Paraguay-Delgado F., Lumbreras PachecoJ., Ornelas C., Martínez-Sánchez R., Alonso-Núñez G. (2006). Synthesis and characterization of Ni, Mo, W sulfide unsupported catalysts for HDS of DBT. Revista Mexicana de Ingeniería Química 5, 285-292.
  • Kar T., Hascakir B. (2021). Effect of solvent type on emulsion formation in steam and solvent-steam flooding processes for heavy oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects 611, 1-7. https://doi.org/10.1016/j.colsurfa.2020.125783
  • Kholmurodov T., Mirzaev O., Affane B., Tajik A., Romanova K., Galyametdinov Y., Dengaev A., Vakhin A. (2023). Thermochemical  Upgrading of Heavy Crude Oil in Reservoir Conditions. Processes 11, 1-12. https://doi.org/10.3390/pr11072156
  • Ko S., Huh C. (2019). Use of nanoparticles for oil production applications. Journal of Petroleum Science and Engineering 172, 97-114. https://doi.org/10.1016/j.petrol.2018.09.051
  • Lashari N., Ganat T. (2020). Emerging applications of nanomaterials in chemical enhanced oil recovery: Progress and perspective. Chinese Journal of Chemical Engineering 28, 1995-2009. https://doi.org/10.1016/j.cjche.2020.05.019
  • Lam-Maldonado M., Melo-Banda J.A., Macias-Ferrer D., Schacht P. (2020). NiFe Nanocatalysts for the Hydrocracking Heavy Crude Oil. Catalysis Today 349, 159-167. https://doi.org/10.1016/j.cattod.2018.08.005
  • Lao J., Cheng H., Wang Y., Song H. (2024). Micro/Nanoparticle Characteristics and Flow in Porous Media: A Review towards Enhanced Oil Recovery. Energies 17, 1-25  . https://doi.org/10.3390/en17164136
  • Li C., Huang W., Zhou C., Chen Y. (2019). Advances on the transition-metal based catalysts for aquathermolysis upgrading of heavy crude oil. Fuel 257, 1-14. https://doi.org/10.1016/j.fuel.2019.115779
  • Liu Z., Liang Y., Wang Q., Guo Y., Gao M., Wang Z., Liu W. (2020). Status and progress of worldwide EOR field applications. Journal of Petroleum Science and Engineering 193, 1-32. https://doi.org/10.1016/j.petrol.2020.107449
  • Medina O. E., Olmos C., Lopera S. H., Cortés F. B., Franco C. A. (2019). Nanotechnology Applied to Thermal Enhanced Oil Recovery Processes: A Review. Energies 12, p. 1-36. https://doi.org/10.3390/en12244671
  • Morelos-Santos O., Reyes de la Torre A., Melo-Banda A., Schacht-Hernández P. (2022).  A novel direct method in one-step for catalytic heavy crude oil upgrading using iron oxide nanoparticles. Catalysis Today 292-293, 60-71. https://doi.org/10.1016/j.cattod.2021.04.024
  • Mukhamatdinov I., Mahmoud A., Affane B., Mukhamatdinova R., Sitnov S., Vakhin A. (2023). Development of a Nanodispersed Catalyst Based on Iron and Nickel for In Situ Upgrading Ashal′cha Heavy Oil. Energy Fuels 37, 13912−13927. https://doi.org/10.1021/acs.energyfuels.3c02257
  • Mustafin R., Manasrah A., Vitale G., Askari R., Nassar N. (2020). Enhanced thermal conductivity and reduced viscosity of aegirine-based VR/VGO nanofluids for enhanced thermal oil recovery application. Journal of Petroleum Science and Engineering 185, 1-11. https://doi.org/10.1016/j.petrol.2019.106569
  • Negi G., Anirbid S., Sivakumar P. (2021). Applications of silica and titanium dioxide nanoparticles in enhanced oil recovery: Promises and challenges. Petroleum Research 6, 224-246. https://doi.org/10.1016/j.ptlrs.2021.03.001
  • Nobuo, M. (2022). Geomechanics of Sand Production and Sand Control. In: Sand control for heavy oil reservoirs, Editor Nobuo Morita,  311-324. Gulf Professional Publishin.
  • Panchal H., Patel H., Patel J., Shah M. (2021). A systematic review on nanotechnology in enhanced oil recovery. Petroleum Research 6. 204-212. https://doi.org/10.1016/j.ptlrs.2021.03.003
  • Saeed A., Al-Zaidi B., Hamadi A., Majdi H. (2022). Upgrade of heavy crude oil via aquathermolysis over several types of catalysts. Materials Express 12, 278-287. https://doi.org/10.1166/mex.2022.2139
  • Sitnov S., Khelkhal M., Mukhamatdinov I., Feoktistov D., Vakhin A. (2022). Iron oxide nanoparticles impact on improving reservoir rock minerals catalytic effect on heavy oil Aquathermolysis. Fuel 327, 1-12. https://doi.org/10.1016/j.fuel.2022.124956
  • Sircar A., Rayavarapu K., Bist N., Yadav K., Singh S. (2022). Applications of nanoparticles in enhanced oil recovery. Petroleum Research 7, 77-90. https://doi.org/10.1016/j.ptlrs.2021.08.004
  • Speight J. K. (2013). Thermal Methods of Recovery, in “Heavy Oil Production Processes.  Editorial Gulf Professional Publishing, Wyoming, USA.
  • Suwaid M., Varfolomeev, M., Al-muntaser A., Yuan C. (2020). In-situ catalytic upgrading of heavy oil using oil-soluble transition metal-based catalysts. Fuel 281, 1-13. https://doi.org/10.1016/j.fuel.2020.118753
  • Varfolomeev M., Yuan C., Bolotov A., Minkhanov I., Mehrabi-Kalajahi S., Saifullin E., Marvanov M., Baygildin E., Sabiryanov R., Rojas A., Emelianov D., Al-Muntaser A., Ganiev B., Zaripov A., Beregovoi A., Shaihutdinov D. (2021). Effect of copper stearate as catalysts on the performance of in-situ combustion process for heavy oil recovery and upgrading. Journal of Petroleum Science and Engineering 207, 1-11. https://doi.org/10.1016/j.petrol.2021.109125
  • Varfolomeev M., Yuan C., Ancheyta J. (2023). Catalytic In-Situ Upgrading of Heavy and Extra-Heavy Crude Oils. Wiley, India.
  • Velayati A., Nouri A. (2020). Emulsification and emulsion flow in thermal recovery operations with a focus on SAGD operations: A critical review. Fuel. 267, 1-13. https://doi.org/10.1016/j.fuel.2020.117141
  • Weissman J.G. (1996). Review of Processes for Downhole Catalytic Upgrading of Heavy Crude Oil. Fuel Processing Technology 50, 199-213. https://doi.org/10.1016/S0378-3820(96)01067-3  
  • Wu Z., Chen H., Cai X., Gou Q., Jiang L., Chen K., Chen Z., Jiang S. (2023).  Current Status and Future Trends of In Situ Catalytic Upgrading of Extra Heavy Oil. Energies 16, 1-29. 4610. https://doi.org/10.3390/en16124610
  • Zhou W., Xin C., Chen Y., Mouhouadi R.D., Chen S. (2023). Nanoparticles for Enhancing Heavy Oil Recovery: Recent Progress, Challenges, and Future Perspectives. Energy & Fuels 37, 8057-8714. https://doi.org/10.1021/acs.energyfuels.3c00684