- Abubakar, E.M., & Misau, M.S. (2017). Percentage yield and acute toxicity of the plant extracts of Ceiba pentandra grown in Bauchi State, North Eastern Nigeria. Journal of Pharmacognosy and Phytochemistry, 6, 1777-1779.
- Aguirre-Dugua, X., Castillo-Juárez, I., & del Mar Ruiz-Posadas, L. (2022). Usos actuales y potencial de las plantas aromáticas y medicinales. AgroDivulgación, 2, 53-63. https://doi.org/10.54767/ad.v2i2.52
- Alara, O.R., Abdurahman, N.H., Mudalip, S.K.A., & Olalere, O.A. (2018). Characterization and effect of extraction solvents on the yield and total phenolic content from Vernonia amygdalina leaves. Journal of Food Measurement and Characterization, 12, 311-316.
- Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of food engineering, 117, 426-436. https://doi.org/10.1016/j.jfoodeng.2013.01.014
- Belwal, T., Cravotto, C., Prieto, M.A., Venskutonis, P.R., Daglia, M., Devkota, H.P., & Cravotto, G. (2022). Effects of different drying techniques on the quality and bioactive compounds of plant-based products: A critical review on current trends. Drying Technology, 40, 1539-1561. https://doi.org/10.1080/07373937.2022.2068028
- Benarfa, A., Gourine, N., Hachani, S., Harrat, M., & Yousfi, M. (2020). Optimization of ultrasound‐assisted extraction of antioxidative phenolic compounds from Deverra scoparia Coss. & Durieu (flowers) using response surface methodology. Journal of Food Processing And Preservation, 44. https://doi.org/10.1111/jfpp.14514
- Benzie, I.F., & Strain, J.J. (1999). Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. In: Methods in enzymology, Pp. 15-27. Academic press. https://doi.org/10.1016/S0076-6879(99)99005-5
- Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., & Escaleira, L.A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76, 965-977. https://doi.org/10.1016/j.talanta.2008.05.019
- Bitwell, C., Indra, S.S., Luke, C., & Kakoma, M.K. (2023). A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Scientific African, 19, e01585. https://doi.org/10.1016/j.sciaf.2023.e01585
- Braga, M.E.M., Seabra, I.J., Dias, A.M.A., & De Sousa, H.C. (2013). Recent Trends and Perspectives for the Extraction of Natural Products. In: RSC green chemistry series (Rostagno M.A and Prado J.M), pp. 231-284. Royal Society of chemistry https://doi.org/10.1039/9781849737579-00231
- Brand-Williams, W., Cuvelier, M.E., & Berset, C. L.W.T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28, 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
- Bruns, R.E., Scarminio, I.S., & de Barros Neto, B. (2006). Statistical design-chemometrics. Editorial Elsevier, USA.
- Cardador-Martínez, A., Jiménez-Martínez, C., & Sandoval, G. (2011). Revalorization of cactus pear (Opuntia spp.) wastes as a source of antioxidants. Food Science and Technology, 31, 782-788. https://doi.org/10.1590/S0101-20612011000300036
- Cardenas-Sandoval, B.A., López-Laredo, A.R., Martínez-Bonfil, B.P., Bermudez-Torres, K., & Trejo-Tapia, G. (2012). Avances en la fitoquímica de Cuphea aequipetala, C. aequipetala var. hispida y C. lanceolata: Extracción y cuantificación de los compuestos fenólicos y actividad antioxidante. Revista mexicana de ingeniería química, 11, 401-413.
- Chou, C.J., Lin, L.C., Hsu, S.Y., & Chen, C.F (1993). Estudios sobre los componentes químicos de Dichondra Micrantha. Revista de Medicina Tradicional China, 4, 143-149.
- Clemeña, J.J.A., & Galarpe, V.R.K.R. (2017). Phytochemical profile of bark and leaf extracts of Jacquemontia paniculata (Convolvulaceae). International Journal of Biosciences, 11, 95-101. http://dx.doi.org/10.12692/ijb/11.3.95-101
- Dailey, A., & Vuong, Q. V. (2015). Optimization of aqueous extraction conditions for recovery of phenolic content and antioxidant properties from Macadamia (Macadamia tetraphylla) skin waste. Antioxidants, 4, 699-718. https://doi.org/10.3390/antiox4040699
- Dangles, O. (2012). Antioxidant activity of plant phenols: chemical mechanisms and biological significance. Current Organic Chemistry, 16, 692-714. https://doi.org/10.2174/138527212799957995
- de Hoyos-Martínez, P.L., Merle, J., Labidi, J., & Charrier–El Bouhtoury, F. (2019). Tannins extraction: A key point for their valorization and cleaner production. Journal of Cleaner Production, 206, 1138-1155. https://doi.org/10.1016/j.jclepro.2018.09.243
- Dhawan, D., & Gupta, J. (2017). Research article comparison of different solvents for phytochemical extraction potential from Datura metel plant leaves. International Journal of Biological Chemistry, 11, 17-22.
- Dongmo, F., Dogmo, S.S., & Njintang, Y.N. (2017). Aqueous extraction optimization of the antioxidant and antihyperglycemic components of Boscia Senegalensis using central composite design methodology. Journal of Food Science and Nutrition, 3, 15. https://doi.org/10.24966/FSN-1076/100015
- Ennaifer, M., Bouzaiene, T., Chouaibi, M., & Hamdi, M. (2018). Pelargonium graveolens aqueous decoction: A new water-soluble polysaccharide and antioxidant-rich extract. BioMed Research International, 2018. https://doi.org/10.1155/2018/2691513
- Estrada-Zúñiga, M. E., Arano-Varela, H., Buendía-González, L., & Orozco-Villafuerte, J. (2012). Fatty acids, phenols content, and antioxidant activity in Ibervillea sonorae callus cultures. Revista mexicana de ingeniería química, 11, 89-96.
- Flores-Martínez, H., León-Campos, C., Estarrón-Espinosa, M., & Orozco-Avila, I. (2016). Process optimization for the extraction of antioxidants from mexican oregano (Lippia graveolens HBK) by the response surface methodology (RSM) approach. Revista Mexicana de Ingeniería Química, 15, 773-785.
- Fotakis, C., Tsigrimani, D., Tsiaka, T., Lantzouraki, D.Z., Strati, I.F., Makris, C., & Zoumpoulakis, P. (2016). Metabolic and antioxidant profiles of herbal infusions and decoctions. Food Chemistry, 211, 963-971. https://doi.org/10.1016/j.foodchem.2016.05.124
- Galani, J.H.Y., Patel, J.S., Patel, N.J., Talati, J.G. (2017). Storage of Fruits and Vegetables in Refrigerator Increases their Phenolic Acids but Decreases the Total Phenolics, Anthocyanins and Vitamin C with Subsequent Loss of their Antioxidant Capacity. Antioxidants, 6, 59. https://doi.org/10.3390/antiox6030059
- García, R.G. (2015). Plantas medicinales de Aguascalientes. Universidad Autónoma de Aguascalientes, México.
- García-Márquez, E., Román-Guerrero, A., Pérez-Alonso, C., Cruz-Sosa, F., Jiménez-Alvarado, R., & Vernon-Carter, E. J. (2012). Effect of solvent-temperature extraction conditions on the initial antioxidant activity and total phenolic content of muitle extracts and their decay upon storage at different pH. Revista mexicana de ingeniería química, 11, 1-10.
- Gil-Martín, E., Forbes-Hernández, T., Romero, A., Cianciosi, D., Giampieri, F., & Battino, M. (2022). Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chemistry, 378, 131918. https://doi.org/10.1016/j.foodchem.2021.131918
- Gogoi, P., Chutia, P., Singh, P., & Mahanta, C. L. (2019). Effect of optimized ultrasound‐assisted aqueous and ethanolic extraction of Pleurotus citrinopileatus mushroom on total phenol, flavonoids and antioxidant properties. Journal of food process engineering, 42, e13172. https://doi.org/10.1111/jfpe.13172
- Goldsmith, C.D., Vuong, Q.V., Stathopoulos, C.E., Roach, P.D., & Scarlett, C.J. (2014). Optimization of the aqueous extraction of phenolic compounds from olive leaves. Antioxidants, 3, 700-712. https://doi.org/10.3390/antiox3040700
- Hiai, S., Oura, H., & Nakajima, T. (1976). Color reaction of some sapogenins and saponins with vanillin and sulfuric acid. Planta médica, 29, 116-122. https://doi.org/10.1055/s-0028-1097639
- Ibrahim, R.M., Abdel-Salam, F.F. & Farahat, E. (2020) Utilization of Carob (Ceratonia siliqua L.) Extract as Functional Ingredient in Some Confectionery Products. Food and Nutrition Sciences, 11, 757-772. https://doi.org/10.4236/fns.2020.118054
- Ji, S., Yoo, T. K., Jin, S., Ju, H. J., Eom, S. H., Kim, J. S., & Hyun, T. K. (2020). Changes in the phenolic compounds profile, antioxidant and anti-melanogenic activity from organs of Petasites japonicas under different extraction methods. Revista Mexicana de Ingeniería Química, 19, 1453-1464.
- Juániz, I., Ludwig, I.A., Huarte, E., Pereira-Caro, G., Moreno-Rojas, J.M., Cid, C., & De Peña, M.P. (2016). Influence of heat treatment on antioxidant capacity and (poly) phenolic compounds of selected vegetables. Food chemistry, 197, 466-473. https://doi.org/10.1016/j.foodchem.2015.10.139
- Kähkönen, M.P., Hopia, A.I., Vuorela, H.J., Rauha, J.P., Pihlaja, K., Kujala, T.S., & Heinonen, M. (1999). Antioxidant activity of plant extracts containing phenolic compounds. Journal of agricultural and food chemistry, 47, 3954-3962. https://doi.org/10.1021/jf990146l
- Kashkouli, S., Jamzad, M., & Nouri, A. (2018). Total phenolic and flavonoids contents, radical scavenging activity and green synthesis of silver nanoparticles by Laurus nobilis L. leaves aqueous extract. Journal of Medicinal Plants and By-products, 7, 25-32. 10.22092/JMPB.2018.116725
- Khalil, R. R., & Mustafa, Y. F. (2020). Phytochemical, antioxidant and antitumor studies of coumarins extracted from Granny Smith apple seeds by different methods. Systematic Reviews in Pharmacy, 11, 57-63. https://doi/10.5530/srp.2020.2.10
- Kumar, A.P.N., Kumar, M., Jose, A., Tomer, V., Oz, E., & Oz, F. (2023). Major phytochemicals: recent advances in health benefits and extraction method. Molecules, 28, 887. https://doi.org/10.3390/molecules28020887
- Kunatsa, Y., Chidewe, C., & Zvidzai, C.J. (2020). Phytochemical and anti-nutrient composite from selected marginalized Zimbabwean edible insects and vegetables. Journal of Agriculture and Food Research, 2, 10002. https://doi.org/10.1016/j.jafr.2020.100027
- Ladas, E.J., Jacobson, J.S., Kennedy, D.D., Teel, K., Fleischauer, A., & Kelly, K.M. (2004). Antioxidants and cancer therapy: a systematic review. Journal of clinical oncology, 22, 517-528. https://doi.org/10.1200/jco.2004.03.086
- Lee, I.H., Chung, H.J., Shin, J.S., Ha, I.H., Kim, M.R., Koh, W., & Lee, J. (2017). Influence of boiling duration of GCSB-5 on index compound content and antioxidative and anti-inflammatory activity. Pharmacognosy Magazine, 13, 418.
- Luo, C., & Chen, Y.S. (2010). Optimization of extraction technology of Se-enriched Hericium erinaceum polysaccharides by Box–Behnken statistical design and its inhibition against metal elements loss in skull. Carbohydrate Polymers, 82, 854-860. https://doi.org/10.1016/j.carbpol.2010.06.005
- Makkiyah, F. A., Rahmi, E. P., Susantiningsih, T., Marliani, N., Arista, R. A., & Nurcholis, W. (2023). Optimization of Graptophyllum pictum leaves extraction using a simplex centroid design focused on extracting flavonoids with antioxidant activity. Journal of Applied Pharmaceutical Science, 13, 214-221.
- Martins, P.M., Thorat, B.N., Lanchote, A.D., & Freitas, L.A. (2016). Green extraction of glycosides from Stevia rebaudiana (Bert.) with low solvent consumption: A desirability approach. Resource-Efficient Technologies, 2, 247-253. https://doi.org/10.1016/j.reffit.2016.11.007
- Mocan, A., Vlase, L., Vodnar, D.C., Gheldiu, A.M., Oprean, R., & Crișan, G. (2015). Antioxidant, antimicrobial effects and phenolic profile of Lycium barbarum L. flowers. Molecules, 20, 15060-15071. https://doi.org/10.3390/molecules200815060
- Muala, W.C.B., Desobgo, Z.S.C., & Jong, N.E. (2021). Optimization of extraction conditions of phenolic compounds from Cymbopogon citratus and evaluation of phenolics and aroma profiles of extract. Heliyon, 7. https://doi.org/10.1016/j.heliyon.2021.e06744
- Murador, D., Braga, A.R., Da Cunha, D., & De Rosso, V. (2017). Alterations in phenolic compound levels and antioxidant activity in response to cooking technique effects: A meta-analytic investigation. Critical Reviews in Food Science and Nutrition, 58, 169–177. https://doi:10.1080/10408398.2016.1140121
- Muzitano, M.F., Bergonzi, M.C., De Melo, G.O., Lage, C.L.S., Bilia, A.R., Vincieri, F.F., Rossi-Bergmann, B., & Costa, S.S. (2011). Influence of cultivation conditions, season of collection and extraction method on the content of antileishmanial flavonoids from Kalanchoe pinnata. Journal of Ethnopharmacology, 133, 132-137. https://doi.org/10.1016/j.jep.2010.09.020
- Ozay, C., & Mammadov, R. (2019). Antioxidant activity, total phenolic, flavonoid and saponin contents of different solvent extracts of Convolvulus phrygius. Bornm. Current Perspextives on Medicinal & Aromatic Plants, 2, 23-28. https://doi.org/10.38093/cupmap.567809
- Papoutsis, K., Pristijono, P., Golding, J.B., Stathopoulos, C.E., Bowyer, M.C., Scarlett, C.J., & Vuong, Q.V. (2016). Optimisation of aqueous extraction conditions for the recovery of phenolic compounds and antioxidants from lemon pomace. International Journal of Food Science & Technology, 51, 2009-2018. https://doi.org/10.1111/ijfs.13168
- Rajendiran, D., Packirisamy, S., & Gunasekaran, K. (2018). A review on role of antioxidants in diabetes. Asian Journal of Pharmaceutical and Clinical Research, 11, 48-53. http://dx.doi.org/10.22159/ajpcr.2018.v11i2.23241
- Ramírez-Godínez, J., Jaimez-Ordaz, J., Castañeda-Ovando, A., Añorve-Morga, J., Salazar-Pereda, V., González-Olivares, L.G., & Contreras-López, E. (2017). Optimization of physical conditions for the aqueous extraction of antioxidant compounds from ginger (Zingiber officinale) applying a box-Behnken design. Plant foods for human nutrition, 72, 34-40.
- Ropiak, H. M., Ramsay, A., & Mueller-Harvey, I. (2016). Condensed tannins in extracts from European medicinal plants and herbal products. Journal of pharmaceutical and biomedical analysis, 121, 225-231. https://doi.org/10.1016/j.jpba.2015.12.034
- Rubanza, C.D.K., Shem, M.N., Otsyina, R., Bakengesa, S.S., Ichinohe, T., & Fujihara, T. (2005). Polyphenolics and tannins effect on in vitro digestibility of selected Acacia species leaves. Animal Feed Science and Technology, 119, 129-142. https://doi.org/10.1016/j.anifeedsci.2004.12.004
- Sagar, N.A., Pareek, S., & Gonzalez-Aguilar, G.A. (2020). Quantification of flavonoids, total phenols and antioxidant properties of onion skin: A comparative study of fifteen Indian cultivars. Journal of food science and technology, 57, 2423-2432. https://doi.org/10.1007/s13197-020-04277-w
- Schinella, G.R., Tournier, H.A., Prieto, J.M., De Buschiazzo, P.M., & Rıos, J.L. (2002). Antioxidant activity of anti-inflammatory plant extracts. Life sciences, 70, 1023-1033. https://doi.org/10.1016/s0024-3205(01)01482-5
- Sheu, M.J., Deng, J.S., Huang, M.H., Liao, J.C., Wu, C.H., Huang, S.S., & Huang, G.J. (2012). Antioxidant and anti-inflammatory properties of Dichondra repens Forst. and its reference compounds. Food chemistry, 132, 1010-1018. https://doi.org/10.1016/j.foodchem.2011.09.140
- Silva, E., Rogez, H., & Larondelle, Y. (2007). Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Separation And Purification Technology, 55, 381-387. https://doi.org/10.1016/j.seppur.2007.01.008
- Sindhi, V., Gupta, V., Sharma, K., Bhatnagar, S., Kumari, R., & Dhaka, N. (2013). Potential applications of antioxidants–A review. Journal of pharmacy research, 7, 828-835. https://doi.org/10.1016/j.jopr.2013.10.001
- Soni, A., & Sosa, S. (2013). Phytochemical analysis and free radical scavenging potential of herbal and medicinal plant extracts. Journal of Pharmacognosy and phytochemistry, 2, 22-29.
- Sultana, N.B. (2012). Effect of drying techniques on the total phenolic contents and antioxidant activity of selected fruits. Journal Of Medicinal Plants Research, 6. https://doi.org/10.5897/jmpr11.916
- Tan, P.W., Tan, C.P., & Ho, C.W. (2011). Antioxidant properties: Effects of solid-to-solvent ratio on antioxidant compounds and capacities of Pegaga (Centella asiatica). International Food Research Journal, 18, 557.
- Tay, P., Tan, C., Abas, F., Yim, H., & Ho, C. (2014). Assessment of Extraction Parameters on Antioxidant Capacity, Polyphenol Content, Epigallocatechin Gallate (EGCG), Epicatechin Gallate (ECG) and Iriflophenone 3-C-β-Glucoside of Agarwood (Aquilaria crassna) Young Leaves. Molecules, 19, 12304-12319. https://doi.org/10.3390/molecules190812304
- Universidad Autónoma de México. (2019). Atlas de las Plantas de la Medicina Tradicional Mexicana. Available at: http://www.medicinatradicionalmexicana.unam.mx/apmtm/termino.php?l=3&t=dichondra-argentea. Accessed: June 18, 2024.
- Yapo, B.M., Besson, V., Beourou, S., & Koffi, K. (2014). Optimization of water-extract of phenolic and antioxidant compounds from kinkéliba (Combretum micranthum) leaves. African Journal of Food Science Research, 2, 37-43.
- Yuming, L., Guangyi, L., Jianxin, Z., Kongyun, W., Bixue, X., & Bo, L. (2002). Studies on chemical constituents of Dichondra repens. Zhongguo yao xue za zhi (Zhongguo yao xue hui: 1989), 37, 577-579.
|