Vol. 24, No. 1 (2025), Sim25450 https://doi.org/10.24275/rmiq/Sim25450


Development and validation of a prediction model for the extraction of Total Phenolic and its antioxidant activity from Dichondra argentea


 

Authors

S. Fernández-Avalos, L. González-Cruz, N.L. Flores-Martínez, A. Bernardino-Nicanor


Abstract

Dichondra argentea is used in traditional medicine to treat diseases such as cholecystitis, tonsillitis, gastritis, general body aches and cardiovascular problems. In addition, it is consumed for vomiting, fever, diarrhea and loss of appetite, but the biological activity attributed to it has not yet been demonstrated. Therefore, the aim of the present work was to optimize the extraction of total phenolics and their antioxidant activity from Dichondra argentea using water as an extractant. For this purpose, a response surface model was used that included the boiling time, the plant:solvent ratio and the type of sample drying as extraction parameters. The results showed that the optimal extraction conditions are 15 minutes of boiling, a plant-solvent ratio of 1 g of dried sample /55 mL water and convection drying. These conditions made it possible to obtain the highest antioxidant activities for the DPPH and FRAP methods (356.815 µg Trolox eq /g of dried extract and 274.77 µg Fe+2 eq /g of dried extract, respectively) as well as the highest content of phenolic compounds (3630.88 µg EAG/g of dried extract). It was also found that time had the greatest influence on the 3 responses. In addition, the optimized extract also had a high content of flavonoids, condensed tannins and saponins.


Keywords

phytochemicals, antioxidant, Dichondra argentea, aqueous extract, extraction conditions.


References

  • Abubakar, E.M., & Misau, M.S. (2017). Percentage yield and acute toxicity of the plant extracts of Ceiba pentandra grown in Bauchi State, North Eastern Nigeria. Journal of Pharmacognosy and Phytochemistry, 6, 1777-1779.
  • Aguirre-Dugua, X., Castillo-Juárez, I., & del Mar Ruiz-Posadas, L. (2022). Usos actuales y potencial de las plantas aromáticas y medicinales. AgroDivulgación, 2, 53-63. https://doi.org/10.54767/ad.v2i2.52
  • Alara, O.R., Abdurahman, N.H., Mudalip, S.K.A., & Olalere, O.A. (2018). Characterization and effect of extraction solvents on the yield and total phenolic content from Vernonia amygdalina leaves. Journal of Food Measurement and Characterization, 12, 311-316.
  • Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of food engineering, 117, 426-436. https://doi.org/10.1016/j.jfoodeng.2013.01.014
  • Belwal, T., Cravotto, C., Prieto, M.A., Venskutonis, P.R., Daglia, M., Devkota, H.P., & Cravotto, G. (2022). Effects of different drying techniques on the quality and bioactive compounds of plant-based products: A critical review on current trends. Drying Technology, 40, 1539-1561. https://doi.org/10.1080/07373937.2022.2068028
  • Benarfa, A., Gourine, N., Hachani, S., Harrat, M., & Yousfi, M. (2020). Optimization of ultrasound‐assisted extraction of antioxidative phenolic compounds from Deverra scoparia Coss. & Durieu (flowers) using response surface methodology. Journal of Food Processing And Preservation, 44. https://doi.org/10.1111/jfpp.14514
  • Benzie, I.F., & Strain, J.J. (1999). Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. In: Methods in enzymology, Pp. 15-27. Academic press. https://doi.org/10.1016/S0076-6879(99)99005-5
  • Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., & Escaleira, L.A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76, 965-977. https://doi.org/10.1016/j.talanta.2008.05.019
  • Bitwell, C., Indra, S.S., Luke, C., & Kakoma, M.K. (2023). A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Scientific African, 19, e01585. https://doi.org/10.1016/j.sciaf.2023.e01585
  • Braga, M.E.M., Seabra, I.J., Dias, A.M.A., & De Sousa, H.C. (2013). Recent Trends and Perspectives for the Extraction of Natural Products. In:  RSC green chemistry series (Rostagno M.A and Prado J.M), pp. 231-284. Royal Society of chemistry https://doi.org/10.1039/9781849737579-00231
  • Brand-Williams, W., Cuvelier, M.E., & Berset, C. L.W.T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28, 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Bruns, R.E., Scarminio, I.S., & de Barros Neto, B. (2006). Statistical design-chemometrics. Editorial Elsevier, USA.
  • Cardador-Martínez, A., Jiménez-Martínez, C., & Sandoval, G. (2011). Revalorization of cactus pear (Opuntia spp.) wastes as a source of antioxidants. Food Science and Technology, 31, 782-788. https://doi.org/10.1590/S0101-20612011000300036
  • Cardenas-Sandoval, B.A., López-Laredo, A.R., Martínez-Bonfil, B.P., Bermudez-Torres, K., & Trejo-Tapia, G. (2012). Avances en la fitoquímica de Cuphea aequipetala, C. aequipetala var. hispida y C. lanceolata: Extracción y cuantificación de los compuestos fenólicos y actividad antioxidante. Revista mexicana de ingeniería química, 11, 401-413.
  • Chou, C.J., Lin, L.C., Hsu, S.Y., & Chen, C.F (1993). Estudios sobre los componentes químicos de Dichondra Micrantha. Revista de Medicina Tradicional China, 4, 143-149.
  • Clemeña, J.J.A., & Galarpe, V.R.K.R. (2017). Phytochemical profile of bark and leaf extracts of Jacquemontia paniculata (Convolvulaceae). International Journal of Biosciences, 11, 95-101. http://dx.doi.org/10.12692/ijb/11.3.95-101
  • Dailey, A., & Vuong, Q. V. (2015). Optimization of aqueous extraction conditions for recovery of phenolic content and antioxidant properties from Macadamia (Macadamia tetraphylla) skin waste. Antioxidants, 4, 699-718. https://doi.org/10.3390/antiox4040699
  • Dangles, O. (2012). Antioxidant activity of plant phenols: chemical mechanisms and biological significance. Current Organic Chemistry, 16, 692-714. https://doi.org/10.2174/138527212799957995
  • de Hoyos-Martínez, P.L., Merle, J., Labidi, J., & Charrier–El Bouhtoury, F. (2019). Tannins extraction: A key point for their valorization and cleaner production. Journal of Cleaner Production, 206, 1138-1155. https://doi.org/10.1016/j.jclepro.2018.09.243
  • Dhawan, D., & Gupta, J. (2017). Research article comparison of different solvents for phytochemical extraction potential from Datura metel plant leaves. International Journal of Biological Chemistry, 11, 17-22.
  • Dongmo, F., Dogmo, S.S., & Njintang, Y.N. (2017). Aqueous extraction optimization of the antioxidant and antihyperglycemic components of Boscia Senegalensis using central composite design methodology. Journal of Food Science and Nutrition, 3, 15. https://doi.org/10.24966/FSN-1076/100015
  • Ennaifer, M., Bouzaiene, T., Chouaibi, M., & Hamdi, M. (2018). Pelargonium graveolens aqueous decoction: A new water-soluble polysaccharide and antioxidant-rich extract. BioMed Research International, 2018. https://doi.org/10.1155/2018/2691513
  • Estrada-Zúñiga, M. E., Arano-Varela, H., Buendía-González, L., & Orozco-Villafuerte, J. (2012). Fatty acids, phenols content, and antioxidant activity in Ibervillea sonorae callus cultures. Revista mexicana de ingeniería química, 11, 89-96.
  • Flores-Martínez, H., León-Campos, C., Estarrón-Espinosa, M., & Orozco-Avila, I. (2016). Process optimization for the extraction of antioxidants from mexican oregano (Lippia graveolens HBK) by the response surface methodology (RSM) approach. Revista Mexicana de Ingeniería Química, 15, 773-785.
  • Fotakis, C., Tsigrimani, D., Tsiaka, T., Lantzouraki, D.Z., Strati, I.F., Makris, C., & Zoumpoulakis, P. (2016). Metabolic and antioxidant profiles of herbal infusions and decoctions. Food Chemistry, 211, 963-971. https://doi.org/10.1016/j.foodchem.2016.05.124
  • Galani, J.H.Y., Patel, J.S., Patel, N.J., Talati, J.G. (2017). Storage of Fruits and Vegetables in Refrigerator Increases their Phenolic Acids but Decreases the Total Phenolics, Anthocyanins and Vitamin C with Subsequent Loss of their Antioxidant Capacity. Antioxidants, 6, 59. https://doi.org/10.3390/antiox6030059
  • García, R.G. (2015). Plantas medicinales de Aguascalientes. Universidad Autónoma de Aguascalientes, México.
  • García-Márquez, E., Román-Guerrero, A., Pérez-Alonso, C., Cruz-Sosa, F., Jiménez-Alvarado, R., & Vernon-Carter, E. J. (2012). Effect of solvent-temperature extraction conditions on the initial antioxidant activity and total phenolic content of muitle extracts and their decay upon storage at different pH. Revista mexicana de ingeniería química, 11, 1-10.
  • Gil-Martín, E., Forbes-Hernández, T., Romero, A., Cianciosi, D., Giampieri, F., & Battino, M. (2022). Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chemistry, 378, 131918. https://doi.org/10.1016/j.foodchem.2021.131918
  • Gogoi, P., Chutia, P., Singh, P., & Mahanta, C. L. (2019). Effect of optimized ultrasound‐assisted aqueous and ethanolic extraction of Pleurotus citrinopileatus mushroom on total phenol, flavonoids and antioxidant properties. Journal of food process engineering, 42, e13172. https://doi.org/10.1111/jfpe.13172
  • Goldsmith, C.D., Vuong, Q.V., Stathopoulos, C.E., Roach, P.D., & Scarlett, C.J. (2014). Optimization of the aqueous extraction of phenolic compounds from olive leaves. Antioxidants, 3, 700-712.  https://doi.org/10.3390/antiox3040700
  • Hiai, S., Oura, H., & Nakajima, T. (1976). Color reaction of some sapogenins and saponins with vanillin and sulfuric acid. Planta médica, 29, 116-122. https://doi.org/10.1055/s-0028-1097639
  • Ibrahim, R.M., Abdel-Salam, F.F. & Farahat, E. (2020) Utilization of Carob (Ceratonia siliqua L.) Extract as Functional Ingredient in Some Confectionery Products. Food and Nutrition Sciences, 11, 757-772. https://doi.org/10.4236/fns.2020.118054
  • Ji, S., Yoo, T. K., Jin, S., Ju, H. J., Eom, S. H., Kim, J. S., & Hyun, T. K. (2020). Changes in the phenolic compounds profile, antioxidant and anti-melanogenic activity from organs of Petasites japonicas under different extraction methods. Revista Mexicana de Ingeniería Química, 19, 1453-1464.
  • Juániz, I., Ludwig, I.A., Huarte, E., Pereira-Caro, G., Moreno-Rojas, J.M., Cid, C., & De Peña, M.P. (2016). Influence of heat treatment on antioxidant capacity and (poly) phenolic compounds of selected vegetables. Food chemistry, 197, 466-473. https://doi.org/10.1016/j.foodchem.2015.10.139
  • Kähkönen, M.P., Hopia, A.I., Vuorela, H.J., Rauha, J.P., Pihlaja, K., Kujala, T.S., & Heinonen, M. (1999). Antioxidant activity of plant extracts containing phenolic compounds. Journal of agricultural and food chemistry, 47, 3954-3962. https://doi.org/10.1021/jf990146l
  • Kashkouli, S., Jamzad, M., & Nouri, A. (2018). Total phenolic and flavonoids contents, radical scavenging activity and green synthesis of silver nanoparticles by Laurus nobilis L. leaves aqueous extract. Journal of Medicinal Plants and By-products, 7, 25-32. 10.22092/JMPB.2018.116725
  • Khalil, R. R., & Mustafa, Y. F. (2020). Phytochemical, antioxidant and antitumor studies of coumarins extracted from Granny Smith apple seeds by different methods. Systematic Reviews in Pharmacy, 11, 57-63. https://doi/10.5530/srp.2020.2.10
  • Kumar, A.P.N., Kumar, M., Jose, A., Tomer, V., Oz, E., & Oz, F. (2023). Major phytochemicals: recent advances in health benefits and extraction method. Molecules, 28, 887. https://doi.org/10.3390/molecules28020887
  • Kunatsa, Y., Chidewe, C., & Zvidzai, C.J. (2020). Phytochemical and anti-nutrient composite from selected marginalized Zimbabwean edible insects and vegetables. Journal of Agriculture and Food Research, 2, 10002. https://doi.org/10.1016/j.jafr.2020.100027
  • Ladas, E.J., Jacobson, J.S., Kennedy, D.D., Teel, K., Fleischauer, A., & Kelly, K.M. (2004). Antioxidants and cancer therapy: a systematic review. Journal of clinical oncology, 22, 517-528. https://doi.org/10.1200/jco.2004.03.086
  • Lee, I.H., Chung, H.J., Shin, J.S., Ha, I.H., Kim, M.R., Koh, W., & Lee, J. (2017). Influence of boiling duration of GCSB-5 on index compound content and antioxidative and anti-inflammatory activity. Pharmacognosy Magazine, 13, 418.
  • Luo, C., & Chen, Y.S. (2010). Optimization of extraction technology of Se-enriched Hericium erinaceum polysaccharides by Box–Behnken statistical design and its inhibition against metal elements loss in skull. Carbohydrate Polymers, 82, 854-860. https://doi.org/10.1016/j.carbpol.2010.06.005
  • Makkiyah, F. A., Rahmi, E. P., Susantiningsih, T., Marliani, N., Arista, R. A., & Nurcholis, W. (2023). Optimization of Graptophyllum pictum leaves extraction using a simplex centroid design focused on extracting flavonoids with antioxidant activity. Journal of Applied Pharmaceutical Science, 13, 214-221.
  • Martins, P.M., Thorat, B.N., Lanchote, A.D., & Freitas, L.A. (2016). Green extraction of glycosides from Stevia rebaudiana (Bert.) with low solvent consumption: A desirability approach. Resource-Efficient Technologies, 2, 247-253. https://doi.org/10.1016/j.reffit.2016.11.007
  • Mocan, A., Vlase, L., Vodnar, D.C., Gheldiu, A.M., Oprean, R., & Crișan, G. (2015). Antioxidant, antimicrobial effects and phenolic profile of Lycium barbarum L. flowers. Molecules, 20, 15060-15071. https://doi.org/10.3390/molecules200815060
  • Muala, W.C.B., Desobgo, Z.S.C., & Jong, N.E. (2021). Optimization of extraction conditions of phenolic compounds from Cymbopogon citratus and evaluation of phenolics and aroma profiles of extract. Heliyon, 7. https://doi.org/10.1016/j.heliyon.2021.e06744
  • Murador, D., Braga, A.R., Da Cunha, D., & De Rosso, V. (2017). Alterations in phenolic compound levels and antioxidant activity in response to cooking technique effects: A meta-analytic investigation. Critical Reviews in Food Science and Nutrition, 58, 169–177. https://doi:10.1080/10408398.2016.1140121
  • Muzitano, M.F., Bergonzi, M.C., De Melo, G.O., Lage, C.L.S., Bilia, A.R., Vincieri, F.F., Rossi-Bergmann, B., & Costa, S.S. (2011). Influence of cultivation conditions, season of collection and extraction method on the content of antileishmanial flavonoids from Kalanchoe pinnata. Journal of Ethnopharmacology, 133, 132-137. https://doi.org/10.1016/j.jep.2010.09.020
  • Ozay, C., & Mammadov, R. (2019). Antioxidant activity, total phenolic, flavonoid and saponin contents of different solvent extracts of Convolvulus phrygius. Bornm. Current Perspextives on Medicinal & Aromatic Plants, 2, 23-28. https://doi.org/10.38093/cupmap.567809
  • Papoutsis, K., Pristijono, P., Golding, J.B., Stathopoulos, C.E., Bowyer, M.C., Scarlett, C.J., & Vuong, Q.V. (2016). Optimisation of aqueous extraction conditions for the recovery of phenolic compounds and antioxidants from lemon pomace. International Journal of Food Science & Technology, 51, 2009-2018. https://doi.org/10.1111/ijfs.13168
  • Rajendiran, D., Packirisamy, S., & Gunasekaran, K. (2018). A review on role of antioxidants in diabetes. Asian Journal of Pharmaceutical and Clinical Research, 11, 48-53. http://dx.doi.org/10.22159/ajpcr.2018.v11i2.23241
  • Ramírez-Godínez, J., Jaimez-Ordaz, J., Castañeda-Ovando, A., Añorve-Morga, J., Salazar-Pereda, V., González-Olivares, L.G., & Contreras-López, E. (2017). Optimization of physical conditions for the aqueous extraction of antioxidant compounds from ginger (Zingiber officinale) applying a box-Behnken design. Plant foods for human nutrition, 72, 34-40.
  • Ropiak, H. M., Ramsay, A., & Mueller-Harvey, I. (2016). Condensed tannins in extracts from European medicinal plants and herbal products. Journal of pharmaceutical and biomedical analysis, 121, 225-231. https://doi.org/10.1016/j.jpba.2015.12.034
  • Rubanza, C.D.K., Shem, M.N., Otsyina, R., Bakengesa, S.S., Ichinohe, T., & Fujihara, T. (2005). Polyphenolics and tannins effect on in vitro digestibility of selected Acacia species leaves. Animal Feed Science and Technology, 119, 129-142. https://doi.org/10.1016/j.anifeedsci.2004.12.004
  • Sagar, N.A., Pareek, S., & Gonzalez-Aguilar, G.A. (2020). Quantification of flavonoids, total phenols and antioxidant properties of onion skin: A comparative study of fifteen Indian cultivars. Journal of food science and technology, 57, 2423-2432. https://doi.org/10.1007/s13197-020-04277-w
  • Schinella, G.R., Tournier, H.A., Prieto, J.M., De Buschiazzo, P.M., & Rıos, J.L. (2002). Antioxidant activity of anti-inflammatory plant extracts. Life sciences, 70, 1023-1033.  https://doi.org/10.1016/s0024-3205(01)01482-5
  • Sheu, M.J., Deng, J.S., Huang, M.H., Liao, J.C., Wu, C.H., Huang, S.S., & Huang, G.J. (2012). Antioxidant and anti-inflammatory properties of Dichondra repens Forst. and its reference compounds. Food chemistry, 132, 1010-1018. https://doi.org/10.1016/j.foodchem.2011.09.140
  • Silva, E., Rogez, H., & Larondelle, Y. (2007). Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Separation And Purification Technology, 55, 381-387. https://doi.org/10.1016/j.seppur.2007.01.008
  • Sindhi, V., Gupta, V., Sharma, K., Bhatnagar, S., Kumari, R., & Dhaka, N. (2013). Potential applications of antioxidants–A review. Journal of pharmacy research, 7, 828-835. https://doi.org/10.1016/j.jopr.2013.10.001
  • Soni, A., & Sosa, S. (2013). Phytochemical analysis and free radical scavenging potential of herbal and medicinal plant extracts. Journal of Pharmacognosy and phytochemistry, 2, 22-29.
  • Sultana, N.B. (2012). Effect of drying techniques on the total phenolic contents and antioxidant activity of selected fruits. Journal Of Medicinal Plants Research, 6. https://doi.org/10.5897/jmpr11.916
  • Tan, P.W., Tan, C.P., & Ho, C.W. (2011). Antioxidant properties: Effects of solid-to-solvent ratio on antioxidant compounds and capacities of Pegaga (Centella asiatica). International Food Research Journal, 18, 557.
  • Tay, P., Tan, C., Abas, F., Yim, H., & Ho, C. (2014). Assessment of Extraction Parameters on Antioxidant Capacity, Polyphenol Content, Epigallocatechin Gallate (EGCG), Epicatechin Gallate (ECG) and Iriflophenone 3-C-β-Glucoside of Agarwood (Aquilaria crassna) Young Leaves. Molecules, 19, 12304-12319. https://doi.org/10.3390/molecules190812304
  • Universidad Autónoma de México. (2019). Atlas de las Plantas de la Medicina Tradicional Mexicana. Available at: http://www.medicinatradicionalmexicana.unam.mx/apmtm/termino.php?l=3&t=dichondra-argentea. Accessed: June 18, 2024.
  • Yapo, B.M., Besson, V., Beourou, S., & Koffi, K. (2014). Optimization of water-extract of phenolic and antioxidant compounds from kinkéliba (Combretum micranthum) leaves.  African Journal of Food Science Research, 2, 37-43.
  • Yuming, L., Guangyi, L., Jianxin, Z., Kongyun, W., Bixue, X., & Bo, L. (2002). Studies on chemical constituents of Dichondra repens. Zhongguo yao xue za zhi (Zhongguo yao xue hui: 1989), 37, 577-579.