Vol. 24, No. 2 (2025), Bio25497 https://doi.org/10.24275/rmiq/Bio25497


Bio-saccharification and fermentation process of a non-conventional starchy material with isolates of autochthonous strains


 

Authors

C.L. Garza-Garza, E. Olguin-Maciel, R. Valdez-Ojeda, E. Huchin-Poot, T. Toledano-Thompson, K.J. Azcorra-May, L. Alzate-Gaviria, J. Dominguez-Maldonado, P. Lappe-Oliveras and R. Tapia-Tussell


Abstract

Consolidated bio-saccharification (CBS) is a promising technique for converting complex materials like starchy biomass into ethanol through simultaneous liquefaction and saccharification, leading to a more sustainable process. This study developed sequential bio-saccharification and fermentation of Brosimum alicastrum seed flour (BSF) in a single reactor using native microorganisms from B. alicastrum fruits. The native yeasts were identified through molecular techniques and their amylolytic capacity, growth rate at different temperatures, and ethanol tolerance were assessed, along with the basidiomycete Trametes hirsuta RT-1. The identified yeasts were Candida tropicalis (PL-1), Pichia kudriavzevii (TL-2), Hanseniaspora guilliermondii (TL-3), and Meyerozyma caribbica (RSL-4). C. tropicalis (PL-1) showed cell growth up to 42°C, 8% v/v ethanol tolerance, and partial BSF degradation, while T. hirsuta RT-1 showed 3% v/v ethanol tolerance and produced the enzymes α-amylase (49.77 7.54 U/mL) and laccase (8,920 1,236 U/mL). The highest ethanol production (18.93 1.78 g/L) was achieved after 11 days of CBS using both C. tropicalis (PL-1) and T. hirsuta RT-1. This strategy represents a novel approach for bioethanol production using CBS from an available non-conventional and inexpensive material, without the use of commercial enzymes or microorganisms.


Keywords

Trametes hirsuta; Candida tropicalis, Amylase, Brosimum alicastrum.


References

  • Ahmed, S. A., Mostafa, F. A., & Ouis, M. A. (2018). Enhancement stability and catalytic activity of immobilized α-amylase using bioactive phospho-silicate glass as a novel inorganic support. International Journal of Biological Macromolecules, 112, 371–382.
  • Albergaria, H., Torrão, A. R., Hogg, T., & Gírio, F. M. (2003). Physiological behaviour of Hanseniaspora guilliermondii in aerobic glucose-limited continuous cultures. FEMS Yeast Research, 3(2), 211–216.
  • Arora, R., Behera, S., & Kumar, S. (2015). Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: a future perspective. Renewable and Sustainable Energy Reviews, 51, 699–717.
  • Barnett, J. A., Payne, R. W., & Yarrow, D. (1990). Yeasts: characteristics and identification.
  • Bautista-Rosales, P. U., Servín-Villegas, R., Calderón-Santoyo, M., & Ragazzo-Sánchez, J. A. (2011). Control biológico de Colletotrichum sp. utilizando levaduras antagonistas nativas del mango. 3er Congreso Internacional de Biología, Química y Agronomía. Universidad Autónoma de Guadalajara, AC, Zapopan, Jalisco, México, 1–10.
  • Bourbon-Melo, N., Palma, M., Rocha, M. P., Ferreira, A., Bronze, M. R., Elias, H., & Sá-Correia, I. (2021). Use of Hanseniaspora guilliermondii and Hanseniaspora opuntiae to enhance the aromatic profile of beer in mixed-culture fermentation with Saccharomyces cerevisiae. Food Microbiology, 95, 103678.
  • Bušić, A., Marđetko, N., Kundas, S., Morzak, G., Belskaya, H., Ivančić Šantek, M., Komes, D., Novak, S., & Šantek, B. (2018). Bioethanol production from renewable raw materials and its separation and purification: a review. Food Technology and Biotechnology, 56(3), 289–311.
  • Carrillo-Nieves, D., Saldarriaga-Hernandez, S., Gutiérrez-Soto, G., Rostro-Alanis, M., Hernández-Luna, C., Alvarez, A. J., Iqbal, H. M. N., & Parra-Saldívar, R. (2020). Biotransformation of agro-industrial waste to produce lignocellulolytic enzymes and bioethanol with a zero waste. Biomass Conversion and Biorefinery, 1–12.
  • Caspeta, L., & Nielsen, J. (2015). Thermotolerant yeast strains adapted by laboratory evolution show trade-off at ancestral temperatures and preadaptation to other stresses. MBio, 6(4), 10–1128.
  • Cholis, M., & Chanson, C. (2019). Molecular identification and potential ethanol production of long-term thermo-tolerant yeast Candida Tropicalis. IOP Conference Series: Earth and Environmental Science, 239(1), 12004.
  • Cripwell, R. A., Favaro, L., Viljoen-Bloom, M., & van Zyl, W. H. (2020). Consolidated bioprocessing of raw starch to ethanol by Saccharomyces cerevisiae: Achievements and challenges. Biotechnology Advances, 42, 107579.
  • Evangelista, S. R., Miguel, M. G. da C. P., Silva, C. F., Pinheiro, A. C. M., & Schwan, R. F. (2015). Microbiological diversity associated with the spontaneous wet method of coffee fermentation. International Journal of Food Microbiology, 210, 102–112.
  • Farid, M. A., El‐Enshasy, H. A., & Noor El‐Deen, A. M. (2002). Alcohol production from starch by mixed cultures of Aspergillus awamori and immobilized Saccharomyces cerevisiae at different agitation speeds. Journal of Basic Microbiology: An International Journal on Biochemistry, Physiology, Genetics, Morphology, and Ecology of Microorganisms, 42(3), 162–171.
  • Favaro, L., Jansen, T., & van Zyl, W. H. (2019). Exploring industrial and natural Saccharomyces cerevisiae strains for the bio-based economy from biomass: the case of bioethanol. Critical Reviews in Biotechnology, 39(6), 800–816.
  • Ferreira, J. A., Agnihotri, S., & Taherzadeh, M. J. (2019). Waste biorefinery. In Sustainable resource recovery and zero waste approaches (pp. 35–52). Elsevier.
  • Gopinath, S. C. B., Anbu, P., Arshad, M. K. M., Lakshmipriya, T., Voon, C. H., Hashim, U., & Chinni, S. V. (2017). Biotechnological processes in microbial amylase production. BioMed Research International, 2017(1), 1272193.
  • Gronchi, N., Favaro, L., Cagnin, L., Brojanigo, S., Pizzocchero, V., Basaglia, M., & Casella, S. (2019). Novel yeast strains for the efficient saccharification and fermentation of starchy by-products to bioethanol. Energies, 12(4), 714.
  • Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K., & Chauhan, B. (2003). Microbial α-amylases: a biotechnological perspective. Process Biochemistry, 38(11), 1599–1616.
  • Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41(41), 95–98.
  • Hawaz, E., Tafesse, M., Tesfaye, A., Kiros, S., Beyene, D., Kebede, G., Boekhout, T., Groenwald, M., Theelen, B., & Degefe, A. (2023). Optimization of bioethanol production from sugarcane molasses by the response surface methodology using Meyerozyma caribbica isolate MJTm3. Annals of Microbiology, 73(1), 2.
  • Henshaw, E., & Wakil, S. M. (2019). Effect of agitation speed and incubation time on amylase production by Bacillus species isolated from malted and fermented Maize (Zea mays). Microbiology Research Journal International, 27(3), 1–7.
  • Hernández-González, O., Vergara-Yoisura, S., & Larqué-Saavedra, A. (2014). Studies on the productivity of Brosimum alicastrum a tropical tree used for animal feed in the Yucatan Peninsula. Bothalia Journal, 44(6), 70–81.
  • Hostinová, E., & Gašperík, J. (2010). Yeast glucoamylases: molecular-genetic and structural characterization. Biologia, 65, 559–568.
  • Huchin Poot, E. G. (2015). Aislamiento de la microbiota del fruto de Brosimum alicastrum swartz para su uso en la producción de bioetanol [Tesis de maestría, Centro de Investigación Científica de Yucatán]. Repositorio académico CICY.
  • Jahangeer, M., Rehman, M. U., Nelofer, R., Nadeem, M., Munir, B., Smułek, W., Jesionowski, T., & Qamar, S. A. (2024). Biotransformation of lignocellulosic biomass to value-added bioproducts: Insights into bio-saccharification strategies and potential concerns. Topics in catalysis, 1-22.
  • Jamai, L., Ettayebi, K., El Yamani, J., & Ettayebi, M. (2007). Production of ethanol from starch by free and immobilized Candida tropicalis in the presence of α-amylase. Bioresource Technology, 98(14), 2765–2770.
  • Jamai, L., Sendide, K., Ettayebi, K., Errachidi, F., Hamdouni-Alami, O., Tahri-Jouti, M. A., McDermott, T., & Ettayebi, M. (2001). Physiological difference during ethanol fermentation between calcium alginate-immobilized Candida tropicalis and Saccharomyces cerevisiae. FEMS Microbiology Letters, 204(2), 375–379.
  • Johannes, C., & Majcherczyk, A. (2000). Laccase activity tests and laccase inhibitors. Journal of Biotechnology, 78(2), 193–199.
  • Kadam, K. L., & Schmidt, S. L. (1997). Evaluation of Candida acidothermophilum in ethanol production from lignocellulosic biomass. Applied Microbiology and Biotechnology, 48, 709–713.
  • Kechkar, M., Sayed, W., Cabrol, A., Aziza, M., Ahmed Zaid, T., Amrane, A., & Djelal, H. (2019). Isolation and identification of yeast strains from sugarcane molasses, dates and figs for ethanol production under conditions simulating algal hydrolysate. Brazilian Journal of Chemical Engineering, 36(1), 157–169.
  • Koulougliotis, D., & Eriotou, E. (2016). Isolation and Identification of Endogenous Yeast Strains in Grapes and Must Solids of Mavrodafni Kefalonias and Antioxidant Activity of the Produced Red Wine. Fermentation technology, 5(1), 1-9.
  • Krumova, E., Kostadinova, N., Miteva‐Staleva, J., Stoyancheva, G., Spassova, B., Abrashev, R., & Angelova, M. (2018). Potential of ligninolytic enzymatic complex produced by white‐rot fungi from genus Trametes isolated from Bulgarian forest soil. Engineering in Life Sciences, 18(9), 692–701.
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549.
  • Kurtzman, C., Fell, J. W., & Boekhout, T. (2011). The yeasts: a taxonomic study. Elsevier.
  • Kurtzman, C. P., & Suzuki, M. (2010). Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience, 51(1), 2–14.
  • Lachance, M.-A. (1995). Yeast communities in a natural tequila fermentation. Antonie Van Leeuwenhoek, 68, 151–160.
  • Lennartsson, P. R., Erlandsson, P., & Taherzadeh, M. J. (2014). Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresource Technology, 165, 3–8.
  • Losoya-Sifuentes, C., Pinto-Jimenez, K., Cruz, M., Rodriguez-Jasso, R. M., Ruiz, H. A., Loredo-Treviño, A., ... & Belmares, R. (2023). Determination of nutritional and antioxidant properties of Maya Nut flour (Brosimum alicastrum) for development of functional foods. Foods, 12(7), 1398.
  • Magan, N. (2008). Ecophysiology: impact of environment on growth, synthesis of compatible solutes and enzyme production. British Mycological Society Symposia Series, 28, 63–78.
  • Matos, Í. T. S. R., de Souza, V. A., D’Angelo, G. do R., Astolfi Filho, S., do Carmo, E. J., & Vital, M. J. S. (2021). Yeasts with Fermentative Potential Associated with Fruits of Camu‐Camu (Myrciaria dubia, Kunth) from North of Brazilian Amazon. The Scientific World Journal, 2021(1), 9929059.
  • Mattam, A. J., Kuila, A., Suralikerimath, N., Choudary, N., Rao, P. V. C., & Velankar, H. R. (2016). Cellulolytic enzyme expression and simultaneous conversion of lignocellulosic sugars into ethanol and xylitol by a new Candida tropicalis strain. Biotechnology for Biofuels, 9, 1–12.
  • Meiners, M., Sánchez-Garduño, C., & De Blois, S. (2009). El ramón: Fruto de nuestra cultura y raíz para la conservación. Biodiversitas, 87, 7–10.
  • Miller, G. L. (1959). Modified DNS method for reducing sugars. Analytical Chemistry, 31(3), 426–428.
  • Okamoto, K., Nitta, Y., Maekawa, N., & Yanase, H. (2011). Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta. Enzyme and Microbial Technology, 48(3), 273–277.
  • Olguin-Maciel, E., Larqué-Saavedra, A., Lappe-Oliveras, P., Barahona-Pérez, L., Alzate-Gaviria, L., Chablé-Villacis, R., Domínguez-Maldonado, J., Pacheco-Catalán, D., Ruíz, H., & Tapia-Tussell, R. (2019). Consolidated Bioprocess for Bioethanol Production from Raw Flour of Brosimum alicastrum Seeds Using the Native Strain of Trametes hirsuta Bm-2. Microorganism, 7(483).
  • Olguin-Maciel, E., Larqué-Saavedra, A., Pérez-Brito, D., Barahona-Pérez, L. F., Alzate-Gaviria, L., Toledano-Thompson, T., Lappe-Oliveras, P. E., Huchin-Poot, E. G., & Tapia-Tussell, R. (2017). Brosimum alicastrum as a novel starch source for bioethanol production. Energies, 10(10), 1574.
  • Olguin-Maciel, E., Singh, A., Chable-Villacis, R., Tapia-Tussell, R., & Ruiz, H. A. (2020). Consolidated bioprocessing, an innovative strategy towards sustainability for biofuels production from crop residues: an overview. Agronomy, 10(11), 1834.
  • Ozer, H. K. (2017). Phenolic compositions and antioxidant activities of Maya nut (Brosimum alicastrum): Comparison with commercial nuts. International Journal of Food Properties, 20(11), 2772-2781.
  • Paschos, T., Xiros, C., & Christakopoulos, P. (2015). Ethanol effect on metabolic activity of the ethalogenic fungus Fusarium oxysporum. BMC Biotechnology, 15, 1–12.
  • Phong, H. X., Klanrit, P., Dung, N. T. P., Yamada, M., & Thanonkeo, P. (2019). Isolation and characterization of thermotolerant yeasts for the production of second-generation bioethanol. Annals of Microbiology, 69, 765–776.
  • Pongcharoen, P. (2022). The ability of Pichia kudriavzevii to tolerate multiple stresses makes it promising for developing improved bioethanol production processes. Letters in Applied Microbiology, 75(1), 36–44.
  • Pongcharoen, P., & Kawano-Kawada, M. (2018). Identification and characterization of Candida tropicalis isolated from soil of sugarcane plantation in Thailand for ethanol production. Asia-Pacific Journal of Science Technology, 23.
  • Quirós-Sauceda, A. E., Palafox-Carlos, H., Sáyago-Ayerdi, S. G., Ayala-Zavala, J. F., Bello-Perez, L. A., Alvarez-Parrilla, E., De La Rosa, L. A., González-Córdova, A. F., & González-Aguilar, G. A. (2014). Dietary fiber and phenolic compounds as functional ingredients: interaction and possible effect after ingestion. Food & Function, 5(6), 1063–1072.
  • Ramos-Villacob, V., Figueroa-Flórez, J. A., Salcedo-Mendoza, J. G., Hernandez-Ruydíaz, J. E., & Romero-Verbel, L. A. (2024) Development of modified cassava starches by ultrasound-assisted amylose/lauric acid complex formation. Revista Mexicana de Ingeniería Química, 23(1), 1-15.
  • Roldan-Cruz, C., Garcia-Hernandez, A., Alvarez-Ramirez, J., & Vernon-Carter, E. J. (2021). Effect of the stirring speed in the in vitro activity of α-amylase. Food Hydrocolloids, 110, 106127.
  • Romano, P., Capece, A., & Jespersen, L. (2006). Taxonomic and ecological diversity of food and beverage yeasts. In Yeasts in food and beverages (pp. 13–53). Springer.
  • Rousset, S., & Schlich, P. (1989). Amylase production in submerged culture using principal component analysis. Journal of Fermentation and Bioengineering, 68(5), 339–343.
  • Saranraj, P., & Stella, D. (2013). Fungal amylase—a review. International Journal of Microbiological Research, 4(2), 203–211.
  • Satyanarayana, T. (2009). Yeast biotechnology: diversity and applications. Springer.
  • Saucedo-Luna, J., Castro-Montoya, A. J., Martinez-Pacheco, M. M., Sosa-Aguirre, C. R., & Campos-Garcia, J. (2011). Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica. Journal of Industrial Microbiology and Biotechnology, 38(6), 725–732.
  • Shraddha, Shekher, R., Sehgal, S., Kamthania, M., & Kumar, A. (2011). Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Research, 2011(1), 217861.
  • Sivaramakrishnan, S., Gangadharan, D., Nampoothiri, K. M., Soccol, C. R., & Pandey, A. (2006). α-Amylases from Microbial Sources--An Overview on Recent Developments. Food Technology & Biotechnology, 44(2).
  • Snoek, T., Verstrepen, K. J., & Voordeckers, K. (2016). How do yeast cells become tolerant to high ethanol concentrations? Current Genetics, 62(3), 475–480.
  • Steensels, J., Snoek, T., Meersman, E., Nicolino, M. P., Voordeckers, K., & Verstrepen, K. J. (2014). Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiology Reviews, 38(5), 947–995.
  • Suárez-Castillo, G.M., Salcedo-Guadalupe, J.G., Contreras-Lozano, K.P., Rangel-Pérez, M.G., Cervera-Ricardo, M.A., & Figueroa-Flórez, J.A. (2024). Increase in the degree of substitution of cassava starches by dual modification processes. Revista Mexicana de Ingeniería Química, 23(3), 1-15.
  • Tanimura, A., Kikukawa, M., Yamaguchi, S., Kishino, S., Ogawa, J., & Shima, J. (2015). Direct ethanol production from starch using a natural isolate, Scheffersomyces shehatae: toward consolidated bioprocessing. Scientific Reports, 5(1), 1–7.
  • Tapia-Tussell, R., Lappe, P., Ulloa, M., Quijano-Ramayo, A., Cáceres-Farfán, M., Larqué-Saavedra, A., & Perez-Brito, D. (2006). A rapid and simple method for DNA extraction from yeasts and fungi isolated from Agave fourcroydes. Molecular Biotechnology, 33, 67–70.
  • Tapia-Tussell, R., Pérez-Brito, D., Torres-Calzada, C., Cortés-Velázquez, A., Alzate-Gaviria, L., Chablé-Villacís, R., & Solís-Pereira, S. (2015). Laccase gene expression and vinasse biodegradation by Trametes hirsuta strain Bm-2. Molecules, 20(8), 15147–15157.
  • Techaparin, A., Thanonkeo, P., & Klanrit, P. (2017). High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion. Brazilian Journal of Microbiology, 48(3), 461–475.
  • Tolieng, V., Kunthiphun, S., Savarajara, A., & Tanasupawat, S. (2018). Diversity of yeasts and their ethanol production at high temperature. Journal of Applied Pharmaceutical Science, 8(2), 136–142.
  • Umeh, S. O., Agwuna, L. C., & Okafor, U. C. (2017). Yeasts from local sources: an alternative to the conventional brewer’s yeast. World Wide Journal of Multidisciplinary Research and Development, 30, 191–195.
  • Vadkertiová, R., Molnárová, J., Vránová, D., & Sláviková, E. (2012). Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees. Canadian Journal of Microbiology, 58(12), 1344–1352.
  • Vaughan-Martini, A., Kurtzman, C. P., Meyer, S. A., & O’Neill, E. B. (2005). Two new species in the Pichia guilliermondii clade: Pichia caribbica sp. nov., the ascosporic state of Candida fermentati, and Candida carpophila comb. nov. FEMS Yeast Research, 5(4–5), 463–469.
  • Visvanathan, R., Qader, M., Jayathilake, C., Jayawardana, B. C., Liyanage, R., & Sivakanesan, R. (2020). Critical review on conventional spectroscopic α‐amylase activity detection methods: merits, demerits, and future prospects. Journal of the Science of Food and Agriculture, 100(7), 2836–2847.
  • Wickerham, L. J. (1951). Taxonomy of yeasts (No. 1029). US Department of Agriculture.
  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications, 18(1), 315–322.
  • Zabed, H., Sahu, J. N., Suely, A., Boyce, A. N., & Faruq, G. (2017). Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable and Sustainable Energy Reviews, 71, 475–501.
  • Zapata‐Castillo, P., Villalonga‐Santana, L., Islas‐Flores, I., Rivera‐Muñoz, G., Ancona‐Escalante, W., & Solís‐Pereira, S. (2015). Synergistic action of laccases from Trametes hirsuta Bm2 improves decolourization of indigo carmine. Letters in Applied Microbiology, 61(3), 252–258.
  • Zhang, J., Ke, W., & Chen, H. (2020). Enhancing laccase production by white-rot fungus Trametes hirsuta SSM-3 in co-culture with yeast sporidiobolus pararoseus SSM-8. Preparative Biochemistry & Biotechnology, 50(1), 10–17.