- Ahmed, S. A., Mostafa, F. A., & Ouis, M. A. (2018). Enhancement stability and catalytic activity of immobilized α-amylase using bioactive phospho-silicate glass as a novel inorganic support. International Journal of Biological Macromolecules, 112, 371–382.
- Albergaria, H., Torrão, A. R., Hogg, T., & Gírio, F. M. (2003). Physiological behaviour of Hanseniaspora guilliermondii in aerobic glucose-limited continuous cultures. FEMS Yeast Research, 3(2), 211–216.
- Arora, R., Behera, S., & Kumar, S. (2015). Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: a future perspective. Renewable and Sustainable Energy Reviews, 51, 699–717.
- Barnett, J. A., Payne, R. W., & Yarrow, D. (1990). Yeasts: characteristics and identification.
- Bautista-Rosales, P. U., Servín-Villegas, R., Calderón-Santoyo, M., & Ragazzo-Sánchez, J. A. (2011). Control biológico de Colletotrichum sp. utilizando levaduras antagonistas nativas del mango. 3er Congreso Internacional de Biología, Química y Agronomía. Universidad Autónoma de Guadalajara, AC, Zapopan, Jalisco, México, 1–10.
- Bourbon-Melo, N., Palma, M., Rocha, M. P., Ferreira, A., Bronze, M. R., Elias, H., & Sá-Correia, I. (2021). Use of Hanseniaspora guilliermondii and Hanseniaspora opuntiae to enhance the aromatic profile of beer in mixed-culture fermentation with Saccharomyces cerevisiae. Food Microbiology, 95, 103678.
- Bušić, A., Marđetko, N., Kundas, S., Morzak, G., Belskaya, H., Ivančić Šantek, M., Komes, D., Novak, S., & Šantek, B. (2018). Bioethanol production from renewable raw materials and its separation and purification: a review. Food Technology and Biotechnology, 56(3), 289–311.
- Carrillo-Nieves, D., Saldarriaga-Hernandez, S., Gutiérrez-Soto, G., Rostro-Alanis, M., Hernández-Luna, C., Alvarez, A. J., Iqbal, H. M. N., & Parra-Saldívar, R. (2020). Biotransformation of agro-industrial waste to produce lignocellulolytic enzymes and bioethanol with a zero waste. Biomass Conversion and Biorefinery, 1–12.
- Caspeta, L., & Nielsen, J. (2015). Thermotolerant yeast strains adapted by laboratory evolution show trade-off at ancestral temperatures and preadaptation to other stresses. MBio, 6(4), 10–1128.
- Cholis, M., & Chanson, C. (2019). Molecular identification and potential ethanol production of long-term thermo-tolerant yeast Candida Tropicalis. IOP Conference Series: Earth and Environmental Science, 239(1), 12004.
- Cripwell, R. A., Favaro, L., Viljoen-Bloom, M., & van Zyl, W. H. (2020). Consolidated bioprocessing of raw starch to ethanol by Saccharomyces cerevisiae: Achievements and challenges. Biotechnology Advances, 42, 107579.
- Evangelista, S. R., Miguel, M. G. da C. P., Silva, C. F., Pinheiro, A. C. M., & Schwan, R. F. (2015). Microbiological diversity associated with the spontaneous wet method of coffee fermentation. International Journal of Food Microbiology, 210, 102–112.
- Farid, M. A., El‐Enshasy, H. A., & Noor El‐Deen, A. M. (2002). Alcohol production from starch by mixed cultures of Aspergillus awamori and immobilized Saccharomyces cerevisiae at different agitation speeds. Journal of Basic Microbiology: An International Journal on Biochemistry, Physiology, Genetics, Morphology, and Ecology of Microorganisms, 42(3), 162–171.
- Favaro, L., Jansen, T., & van Zyl, W. H. (2019). Exploring industrial and natural Saccharomyces cerevisiae strains for the bio-based economy from biomass: the case of bioethanol. Critical Reviews in Biotechnology, 39(6), 800–816.
- Ferreira, J. A., Agnihotri, S., & Taherzadeh, M. J. (2019). Waste biorefinery. In Sustainable resource recovery and zero waste approaches (pp. 35–52). Elsevier.
- Gopinath, S. C. B., Anbu, P., Arshad, M. K. M., Lakshmipriya, T., Voon, C. H., Hashim, U., & Chinni, S. V. (2017). Biotechnological processes in microbial amylase production. BioMed Research International, 2017(1), 1272193.
- Gronchi, N., Favaro, L., Cagnin, L., Brojanigo, S., Pizzocchero, V., Basaglia, M., & Casella, S. (2019). Novel yeast strains for the efficient saccharification and fermentation of starchy by-products to bioethanol. Energies, 12(4), 714.
- Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K., & Chauhan, B. (2003). Microbial α-amylases: a biotechnological perspective. Process Biochemistry, 38(11), 1599–1616.
- Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41(41), 95–98.
- Hawaz, E., Tafesse, M., Tesfaye, A., Kiros, S., Beyene, D., Kebede, G., Boekhout, T., Groenwald, M., Theelen, B., & Degefe, A. (2023). Optimization of bioethanol production from sugarcane molasses by the response surface methodology using Meyerozyma caribbica isolate MJTm3. Annals of Microbiology, 73(1), 2.
- Henshaw, E., & Wakil, S. M. (2019). Effect of agitation speed and incubation time on amylase production by Bacillus species isolated from malted and fermented Maize (Zea mays). Microbiology Research Journal International, 27(3), 1–7.
- Hernández-González, O., Vergara-Yoisura, S., & Larqué-Saavedra, A. (2014). Studies on the productivity of Brosimum alicastrum a tropical tree used for animal feed in the Yucatan Peninsula. Bothalia Journal, 44(6), 70–81.
- Hostinová, E., & Gašperík, J. (2010). Yeast glucoamylases: molecular-genetic and structural characterization. Biologia, 65, 559–568.
- Huchin Poot, E. G. (2015). Aislamiento de la microbiota del fruto de Brosimum alicastrum swartz para su uso en la producción de bioetanol [Tesis de maestría, Centro de Investigación Científica de Yucatán]. Repositorio académico CICY.
- Jahangeer, M., Rehman, M. U., Nelofer, R., Nadeem, M., Munir, B., Smułek, W., Jesionowski, T., & Qamar, S. A. (2024). Biotransformation of lignocellulosic biomass to value-added bioproducts: Insights into bio-saccharification strategies and potential concerns. Topics in catalysis, 1-22.
- Jamai, L., Ettayebi, K., El Yamani, J., & Ettayebi, M. (2007). Production of ethanol from starch by free and immobilized Candida tropicalis in the presence of α-amylase. Bioresource Technology, 98(14), 2765–2770.
- Jamai, L., Sendide, K., Ettayebi, K., Errachidi, F., Hamdouni-Alami, O., Tahri-Jouti, M. A., McDermott, T., & Ettayebi, M. (2001). Physiological difference during ethanol fermentation between calcium alginate-immobilized Candida tropicalis and Saccharomyces cerevisiae. FEMS Microbiology Letters, 204(2), 375–379.
- Johannes, C., & Majcherczyk, A. (2000). Laccase activity tests and laccase inhibitors. Journal of Biotechnology, 78(2), 193–199.
- Kadam, K. L., & Schmidt, S. L. (1997). Evaluation of Candida acidothermophilum in ethanol production from lignocellulosic biomass. Applied Microbiology and Biotechnology, 48, 709–713.
- Kechkar, M., Sayed, W., Cabrol, A., Aziza, M., Ahmed Zaid, T., Amrane, A., & Djelal, H. (2019). Isolation and identification of yeast strains from sugarcane molasses, dates and figs for ethanol production under conditions simulating algal hydrolysate. Brazilian Journal of Chemical Engineering, 36(1), 157–169.
- Koulougliotis, D., & Eriotou, E. (2016). Isolation and Identification of Endogenous Yeast Strains in Grapes and Must Solids of Mavrodafni Kefalonias and Antioxidant Activity of the Produced Red Wine. Fermentation technology, 5(1), 1-9.
- Krumova, E., Kostadinova, N., Miteva‐Staleva, J., Stoyancheva, G., Spassova, B., Abrashev, R., & Angelova, M. (2018). Potential of ligninolytic enzymatic complex produced by white‐rot fungi from genus Trametes isolated from Bulgarian forest soil. Engineering in Life Sciences, 18(9), 692–701.
- Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549.
- Kurtzman, C., Fell, J. W., & Boekhout, T. (2011). The yeasts: a taxonomic study. Elsevier.
- Kurtzman, C. P., & Suzuki, M. (2010). Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience, 51(1), 2–14.
- Lachance, M.-A. (1995). Yeast communities in a natural tequila fermentation. Antonie Van Leeuwenhoek, 68, 151–160.
- Lennartsson, P. R., Erlandsson, P., & Taherzadeh, M. J. (2014). Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresource Technology, 165, 3–8.
- Losoya-Sifuentes, C., Pinto-Jimenez, K., Cruz, M., Rodriguez-Jasso, R. M., Ruiz, H. A., Loredo-Treviño, A., ... & Belmares, R. (2023). Determination of nutritional and antioxidant properties of Maya Nut flour (Brosimum alicastrum) for development of functional foods. Foods, 12(7), 1398.
- Magan, N. (2008). Ecophysiology: impact of environment on growth, synthesis of compatible solutes and enzyme production. British Mycological Society Symposia Series, 28, 63–78.
- Matos, Í. T. S. R., de Souza, V. A., D’Angelo, G. do R., Astolfi Filho, S., do Carmo, E. J., & Vital, M. J. S. (2021). Yeasts with Fermentative Potential Associated with Fruits of Camu‐Camu (Myrciaria dubia, Kunth) from North of Brazilian Amazon. The Scientific World Journal, 2021(1), 9929059.
- Mattam, A. J., Kuila, A., Suralikerimath, N., Choudary, N., Rao, P. V. C., & Velankar, H. R. (2016). Cellulolytic enzyme expression and simultaneous conversion of lignocellulosic sugars into ethanol and xylitol by a new Candida tropicalis strain. Biotechnology for Biofuels, 9, 1–12.
- Meiners, M., Sánchez-Garduño, C., & De Blois, S. (2009). El ramón: Fruto de nuestra cultura y raíz para la conservación. Biodiversitas, 87, 7–10.
- Miller, G. L. (1959). Modified DNS method for reducing sugars. Analytical Chemistry, 31(3), 426–428.
- Okamoto, K., Nitta, Y., Maekawa, N., & Yanase, H. (2011). Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta. Enzyme and Microbial Technology, 48(3), 273–277.
- Olguin-Maciel, E., Larqué-Saavedra, A., Lappe-Oliveras, P., Barahona-Pérez, L., Alzate-Gaviria, L., Chablé-Villacis, R., Domínguez-Maldonado, J., Pacheco-Catalán, D., Ruíz, H., & Tapia-Tussell, R. (2019). Consolidated Bioprocess for Bioethanol Production from Raw Flour of Brosimum alicastrum Seeds Using the Native Strain of Trametes hirsuta Bm-2. Microorganism, 7(483).
- Olguin-Maciel, E., Larqué-Saavedra, A., Pérez-Brito, D., Barahona-Pérez, L. F., Alzate-Gaviria, L., Toledano-Thompson, T., Lappe-Oliveras, P. E., Huchin-Poot, E. G., & Tapia-Tussell, R. (2017). Brosimum alicastrum as a novel starch source for bioethanol production. Energies, 10(10), 1574.
- Olguin-Maciel, E., Singh, A., Chable-Villacis, R., Tapia-Tussell, R., & Ruiz, H. A. (2020). Consolidated bioprocessing, an innovative strategy towards sustainability for biofuels production from crop residues: an overview. Agronomy, 10(11), 1834.
- Ozer, H. K. (2017). Phenolic compositions and antioxidant activities of Maya nut (Brosimum alicastrum): Comparison with commercial nuts. International Journal of Food Properties, 20(11), 2772-2781.
- Paschos, T., Xiros, C., & Christakopoulos, P. (2015). Ethanol effect on metabolic activity of the ethalogenic fungus Fusarium oxysporum. BMC Biotechnology, 15, 1–12.
- Phong, H. X., Klanrit, P., Dung, N. T. P., Yamada, M., & Thanonkeo, P. (2019). Isolation and characterization of thermotolerant yeasts for the production of second-generation bioethanol. Annals of Microbiology, 69, 765–776.
- Pongcharoen, P. (2022). The ability of Pichia kudriavzevii to tolerate multiple stresses makes it promising for developing improved bioethanol production processes. Letters in Applied Microbiology, 75(1), 36–44.
- Pongcharoen, P., & Kawano-Kawada, M. (2018). Identification and characterization of Candida tropicalis isolated from soil of sugarcane plantation in Thailand for ethanol production. Asia-Pacific Journal of Science Technology, 23.
- Quirós-Sauceda, A. E., Palafox-Carlos, H., Sáyago-Ayerdi, S. G., Ayala-Zavala, J. F., Bello-Perez, L. A., Alvarez-Parrilla, E., De La Rosa, L. A., González-Córdova, A. F., & González-Aguilar, G. A. (2014). Dietary fiber and phenolic compounds as functional ingredients: interaction and possible effect after ingestion. Food & Function, 5(6), 1063–1072.
- Ramos-Villacob, V., Figueroa-Flórez, J. A., Salcedo-Mendoza, J. G., Hernandez-Ruydíaz, J. E., & Romero-Verbel, L. A. (2024) Development of modified cassava starches by ultrasound-assisted amylose/lauric acid complex formation. Revista Mexicana de Ingeniería Química, 23(1), 1-15.
- Roldan-Cruz, C., Garcia-Hernandez, A., Alvarez-Ramirez, J., & Vernon-Carter, E. J. (2021). Effect of the stirring speed in the in vitro activity of α-amylase. Food Hydrocolloids, 110, 106127.
- Romano, P., Capece, A., & Jespersen, L. (2006). Taxonomic and ecological diversity of food and beverage yeasts. In Yeasts in food and beverages (pp. 13–53). Springer.
- Rousset, S., & Schlich, P. (1989). Amylase production in submerged culture using principal component analysis. Journal of Fermentation and Bioengineering, 68(5), 339–343.
- Saranraj, P., & Stella, D. (2013). Fungal amylase—a review. International Journal of Microbiological Research, 4(2), 203–211.
- Satyanarayana, T. (2009). Yeast biotechnology: diversity and applications. Springer.
- Saucedo-Luna, J., Castro-Montoya, A. J., Martinez-Pacheco, M. M., Sosa-Aguirre, C. R., & Campos-Garcia, J. (2011). Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica. Journal of Industrial Microbiology and Biotechnology, 38(6), 725–732.
- Shraddha, Shekher, R., Sehgal, S., Kamthania, M., & Kumar, A. (2011). Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Research, 2011(1), 217861.
- Sivaramakrishnan, S., Gangadharan, D., Nampoothiri, K. M., Soccol, C. R., & Pandey, A. (2006). α-Amylases from Microbial Sources--An Overview on Recent Developments. Food Technology & Biotechnology, 44(2).
- Snoek, T., Verstrepen, K. J., & Voordeckers, K. (2016). How do yeast cells become tolerant to high ethanol concentrations? Current Genetics, 62(3), 475–480.
- Steensels, J., Snoek, T., Meersman, E., Nicolino, M. P., Voordeckers, K., & Verstrepen, K. J. (2014). Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiology Reviews, 38(5), 947–995.
- Suárez-Castillo, G.M., Salcedo-Guadalupe, J.G., Contreras-Lozano, K.P., Rangel-Pérez, M.G., Cervera-Ricardo, M.A., & Figueroa-Flórez, J.A. (2024). Increase in the degree of substitution of cassava starches by dual modification processes. Revista Mexicana de Ingeniería Química, 23(3), 1-15.
- Tanimura, A., Kikukawa, M., Yamaguchi, S., Kishino, S., Ogawa, J., & Shima, J. (2015). Direct ethanol production from starch using a natural isolate, Scheffersomyces shehatae: toward consolidated bioprocessing. Scientific Reports, 5(1), 1–7.
- Tapia-Tussell, R., Lappe, P., Ulloa, M., Quijano-Ramayo, A., Cáceres-Farfán, M., Larqué-Saavedra, A., & Perez-Brito, D. (2006). A rapid and simple method for DNA extraction from yeasts and fungi isolated from Agave fourcroydes. Molecular Biotechnology, 33, 67–70.
- Tapia-Tussell, R., Pérez-Brito, D., Torres-Calzada, C., Cortés-Velázquez, A., Alzate-Gaviria, L., Chablé-Villacís, R., & Solís-Pereira, S. (2015). Laccase gene expression and vinasse biodegradation by Trametes hirsuta strain Bm-2. Molecules, 20(8), 15147–15157.
- Techaparin, A., Thanonkeo, P., & Klanrit, P. (2017). High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion. Brazilian Journal of Microbiology, 48(3), 461–475.
- Tolieng, V., Kunthiphun, S., Savarajara, A., & Tanasupawat, S. (2018). Diversity of yeasts and their ethanol production at high temperature. Journal of Applied Pharmaceutical Science, 8(2), 136–142.
- Umeh, S. O., Agwuna, L. C., & Okafor, U. C. (2017). Yeasts from local sources: an alternative to the conventional brewer’s yeast. World Wide Journal of Multidisciplinary Research and Development, 30, 191–195.
- Vadkertiová, R., Molnárová, J., Vránová, D., & Sláviková, E. (2012). Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees. Canadian Journal of Microbiology, 58(12), 1344–1352.
- Vaughan-Martini, A., Kurtzman, C. P., Meyer, S. A., & O’Neill, E. B. (2005). Two new species in the Pichia guilliermondii clade: Pichia caribbica sp. nov., the ascosporic state of Candida fermentati, and Candida carpophila comb. nov. FEMS Yeast Research, 5(4–5), 463–469.
- Visvanathan, R., Qader, M., Jayathilake, C., Jayawardana, B. C., Liyanage, R., & Sivakanesan, R. (2020). Critical review on conventional spectroscopic α‐amylase activity detection methods: merits, demerits, and future prospects. Journal of the Science of Food and Agriculture, 100(7), 2836–2847.
- Wickerham, L. J. (1951). Taxonomy of yeasts (No. 1029). US Department of Agriculture.
- White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications, 18(1), 315–322.
- Zabed, H., Sahu, J. N., Suely, A., Boyce, A. N., & Faruq, G. (2017). Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable and Sustainable Energy Reviews, 71, 475–501.
- Zapata‐Castillo, P., Villalonga‐Santana, L., Islas‐Flores, I., Rivera‐Muñoz, G., Ancona‐Escalante, W., & Solís‐Pereira, S. (2015). Synergistic action of laccases from Trametes hirsuta Bm2 improves decolourization of indigo carmine. Letters in Applied Microbiology, 61(3), 252–258.
- Zhang, J., Ke, W., & Chen, H. (2020). Enhancing laccase production by white-rot fungus Trametes hirsuta SSM-3 in co-culture with yeast sporidiobolus pararoseus SSM-8. Preparative Biochemistry & Biotechnology, 50(1), 10–17.
|