Vol. 24, No. 2 (2025), IA25486 https://doi.org/10.24275/rmiq/IA25486


Preparation and characterization of a biocomposite for Cr(VI) adsorption by evaluating the useful life of the biomaterial


 

Authors

C. Tejada-Tovar, Á. Villabona-Ortiz, R. Ortega-Toro, N. Beleño-Garrido, L. Sierra-Payares


Abstract

The objective of this work was to prepare and characterize a biocomposite made from plantain pseudo stem (PSP), agro-industrial waste and polylactic acid (PLA) for potential use in removing Cr(VI) from solution. Cellulose (CL) was extracted from the plantain pseudo stem waste and modified with PLA. The effect of adsorbent dosage on adsorption efficiency at different concentrations was evaluated, and an adsorption-desorption study was conducted to determine the biocomposite’s lifetime. FTIR, SEM and TGA-DSC analyses were performed. The results showed that the plant fiber was successfully modified with PLA, resulting in the formation of the PSP/PLA biocomposite. It was observed that the adsorbent dosage affected the adsorption process, with the best removal efficiencies being 51.74% at 65 mg/L and 49.74% at 30 mg/L at an optimal pH of 2. Adsorption-desorption cycles showed that the biocomposite can be reused up to twice. The inherent properties of the plant fiber were critical, and the crosslinking agent enhanced the biomaterial’s performance. This biocomposite shows potential for removing metal contaminants from the solution, thereby contributing to the increased utilization of waste biomass.


Keywords

Polylactic acid, Biocomposite, Cellulose, plantain pseudo stem, Agricultural waste.


References

  • Abu Aldam, S., Dey, M., Javaid, S., Ji, Y., & Gupta, S. (2020). On the synthesis and characterization of polylactic acid, polyhydroxyalkanoate, cellulose acetate, and their engineered blends by solvent casting. Journal of Materials Engineering and Performance, 29(9), 5542–5556. https://doi.org/10.1007/s11665-020-04594-3
  • Aigbe, U. O., & Osibote, O. A. (2021). Carbon derived nanomaterials for the sorption of heavy metals from aqueous solution: A review. Environmental Nanotechnology, Monitoring & Management, 16, 100578. https://doi.org/10.1016/j.enmm.2021.100578
  • Badawy, A. M., Farghali, A. A., Bonilla-Petriciolet, A., Selim, A. Q., & Seliem, M. K. (2023). Effective removal of Cr(VI) and methyl orange by nano magnetite loaded starch/muscovite biocomposite: Characterization, experiments, advanced modeling, and physicochemical parameters interpretation. International Journal of Biological Macromolecules, 224, 1052–1064. https://doi.org/10.1016/j.ijbiomac.2022.10.190
  • Castro, D., Rosas-Laverde, N., Belén Aldás, M., Almeida-Naranjo, C., Guerrero, V. H., & Pruna, A. (2021). Chemical modification of agro-industrial waste-based bioadsorbents for enhanced removal of Zn (II) ions from aqueous solutions. Materials, 14(9), 2134. https://doi.org/10.3390/ma14092134
  • Diaz-Rodriguez, K. F., Salazar-Pinto, B. M., Flores-Calla, S. S., & Gonzales-Condori, E. G. (2025). Potential use of artichoke (Cynara cardunculus L.) waste packed in filter bags for the removal of hexavalent chromium from water. Revista Mexicana de Ingeniería Química, 24(1), 1–21. https://doi.org/10.24275/RMIQ/ia25426
  • Fijoł, N., Abdelhamid, H. N., Pillai, B., Hall, S. A., Thomas, N., & Mathew, A. P. (2021). 3D-printed monolithic biofilters based on a polylactic acid (PLA) – hydroxyapatite (HAp) composite for heavy metal removal from an aqueous medium. RSC Advances, 11(51), 32408–32418. https://doi.org/10.1039/d1ra05202k
  • González-Delgado, A., Villabona-Ortíz, A., & Tejada-Tovar, C. (2022). Evaluation of three biomaterials from coconut mesocarp for use in water treatments polluted with an anionic dye. Water, 14(3), 408. https://doi.org/10.3390/w14030408
  • Gupta, R. D., & Raghav, N. (2020). Nano-crystalline cellulose: Preparation, modification and usage as sustained release drug delivery excipient for some non-steroidal anti-inflammatory drugs. International Journal of Biological Macromolecules, 147, 921–930. https://doi.org/10.1016/j.ijbiomac.2019.10.057
  • Hsini, A., Essekri, A., Aarab, N., Laabd, M., Ait Addi, A., Lakhmiri, R., & Albourine, A. (2020). Elaboration of novel polyaniline@Almond shell biocomposite for effective removal of hexavalent chromium ions and Orange G dye from aqueous solutions. Environmental Science and Pollution Research, 27(13), 15245–15258. https://doi.org/10.1007/s11356-020-08039-1
  • Iheanacho, O. C., Nwabanne, J. T., Obi, C. C., Igwegbe, C. A., Onu, C. E., & Dahlan, I. (2023). Adsorptive dephenolization of aqueous solutions using thermally modified corn cob: mechanisms, point of zero charge, and isosteric heat studies. Adsorption Science and Technology, 2023. https://doi.org/10.1155/2023/2813663
  • Ishtiaq, F., Bhatti, H. N., Khan, A., Iqbal, M., & Kausar, A. (2020). Polypyrole, polyaniline and sodium alginate biocomposites and adsorption-desorption efficiency for imidacloprid insecticide. International Journal of Biological Macromolecules, 147, 217–232. https://doi.org/10.1016/j.ijbiomac.2020.01.022
  • Islam, M. A., Angove, M. J., Morton, D. W., Pramanik, B. K., & Awual, M. R. (2020). A mechanistic approach of chromium (VI) adsorption onto manganese oxides and boehmite. Journal of Environmental Chemical Engineering, 8(2), 103515. https://doi.org/10.1016/j.jece.2019.103515
  • Joshi, M., Dwivedi, C., & Manjare, S. (2024). A renewable cellulose-rich biofiller material extracted from waste banana stem fibers for reinforcing natural rubber composites. Journal of Materials Science, 59(2), 519–534. https://doi.org/10.1007/s10853-023-09230-8
  • Kadea, S., Kittikorn, T., & Hedthong, R. (2024). Sustainable laminate biocomposite of wood pulp/PLA with modified PVA-MFC compatibilizer: Weathering resistance and biodegradation in soil. Industrial Crops and Products, 218, 118913. https://doi.org/10.1016/j.indcrop.2024.118913
  • Khan, T., Isa, M. H., Mustafa, M. R., Yeek-Chia, H., Baloo, L., Abd Manan, T. S. B., & Saeed, M. O. (2016). Cr(VI) adsorption from aqueous solution by an agricultural waste based carbon. RSC Advances, 6(61), 56365–56374. https://doi.org/10.1039/c6ra05618k
  • Kumar Sarangi, P., Subudhi, S., Bhatia, L., Saha, K., Mudgil, D., Prasad Shadangi, K., Srivastava, R. K., Pattnaik, B., & Arya, R. K. (2023). Utilization of agricultural waste biomass and recycling toward circular bioeconomy. Environmental Science and Pollution Research, 30(4), 8526–8539. https://doi.org/10.1007/s11356-022-20669-1
  • Labied, R., Benturki, O., Eddine Hamitouche, A. Y., & Donnot, A. (2018). Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): Kinetic, equilibrium, and thermodynamic study. Adsorption Science & Technology, 36(4), 1066–1099. https://doi.org/10.1177/0263617417750739
  • Liang, S., Cai, W., Dang, C., Peng, X., Luo, Z., & Wei, X. (2023). Synthesis of sodium alginate/phosphorus tetramethylmethyl sulfate biocomposite beads with exceptional adsorption rate for Cr(VI) removal. Journal of Environmental Chemical Engineering, 11(2), 109317. https://doi.org/10.1016/j.jece.2023.109317
  • Luqman., M., Vesuanathan, T. A., & Salleh, M. N. (2020). Isolation and characterization of microcrystalline cellulose extracted from banana fiber in poly(lactic acid) biocomposite produced from solvent casting technique. IOP Conference Series: Materials Science and Engineering, 957(1), 012005. https://doi.org/10.1088/1757-899x/957/1/012005
  • Madenli, Ö., Akarsu, C., & Deveci, E. Ü. (2023). Effective removal of hexavalent chromium by novel modified alginate-based biocomposites: Characterization, kinetics and equilibrium studies. Ceramics International, 49(10), 16440–16450. https://doi.org/10.1016/j.ceramint.2023.02.005
  • McNeill, D. C., Pal, A. K., Nath, D., Rodriguez-Uribe, A., Mohanty, A. K., Pilla, S., Gregori, S., Dick, P., & Misra, M. (2024). Upcycling of ligno-cellulosic nutshells waste biomass in biodegradable plastic-based biocomposites uses-a comprehensive review. Composites Part C: Open Access, 100478. https://doi.org/10.1016/j.jcomc.2024.100478
  • Melikoğlu, A. Y., Bilek, S. E., & Cesur, S. (2019). Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace. Carbohydrate Polymers, 215, 330–337. https://doi.org/10.1016/j.carbpol.2019.03.103
  • Meng, F., Wang, G., Du, X., Wang, Z., Xu, S., & Zhang, Y. (2019). Extraction and characterization of cellulose nanofibers and nanocrystals from liquefied banana pseudo-stem residue. Composites Part B: Engineering, 160, 341–347. https://doi.org/10.1016/j.compositesb.2018.08.048
  • Mi, B., & Wang, Y. (2024). Performance and mechanism of porous carbons derived from biomass as adsorbent for removal of Cr(VI). Processes, 12(10), 2229. https://doi.org/10.3390/pr12102229
  • Moreno-Rubio, J. G., Osornio-Rubio, N. R., Jiménez-Islas, H., Barrera-Calva, E., Ramírez-Yañez, A. Y., & Martínez-González, G. M. (2025). Characterization and efficiency of Luffa cylindrica as bioadsorbent in Cr (VI) remotion from synthetic wastewater. Revista Mexicana de Ingeniera Quimica, 24(2), 1–14. https://doi.org/10.24275/rmiq/Mat25443
  • Nandiyanto, A., Oktiani, R., & Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97–118. https://doi.org/10.17509/ijost.v4i1.15806
  • Nata, I., Irawan, C., Hudha, M. I., Lesti, A., Syarkani, M. H., & Naufal, A. (2024). Enhanced copper ion adsorption by rice husk and sugarcane bagasse-based magnetic nanoparticles biocomposites. ASEAN Journal of Chemical Engineering, 24(1), 79–89. https://doi.org/10.22146/ajche.12236
  • Nurdin, S., Roslan, A., Abbakar, M. S. A., Khairuddin, S. A., & Sukri, H. A. M. (2015). Rock melon activated carbon (RMAC) for removal of Cd(II), Ni(II) and Cu(II) from wastewater: kinetics and adsorption equilibrium. International Journal of Chemical Engineering and Applications, 6(2), 105–110. https://doi.org/10.7763/ijcea.2015.v6.461
  • Ortega, G. S., & Rodríguez, A. E. (2018). Síntesis de acetato de celulosa y rayón a partir de residuos agroindustriales del cultivo y procesamiento de piña. Revista Teinnova, 3, 22–28.
  • Prasad, P. S., Gomathi, T., Sudha, P. N., Deepa, M., Rambabu, K., & Banat, F. (2022). Biosilica/Silk Fibroin/Polyurethane biocomposite for toxic heavy metals removal from aqueous streams. Environmental Technology and Innovation, 28, 102741. https://doi.org/10.1016/j.eti.2022.102741
  • Rahim, M., & Mas Haris, M. R. H. (2022). Banana trunk fibers-infused acidified chitosan-based biocomposite for Cadmium(II) sorption. Journal of Natural Fibers, 19(13), 4908–4922. https://doi.org/10.1080/15440478.2020.1870636
  • Righetti, M. C., Cinelli, P., Mallegni, N., Stäbler, A., & Lazzeri, A. (2019). Thermal and mechanical properties of biocomposites made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and potato pulp powder. Polymers, 11(2), 308. https://doi.org/10.3390/polym11020308
  • Rodríguez, A., Ovejero, G., Sotelo, J. L., Mestanza, M., & García, J. (2010). Adsorption of dyes on carbon nanomaterials from aqueous solutions. Journal of Environmental Science and Health, Part A , 45(12), 1642–1653. https://doi.org/10.1080/10934529.2010.506137
  • Saifullah, A., Chacko, N. G., Dhakal, H. N., Khan, S. H., Sarker, F., & Zhang, Z. (2024). Valorisation of agricultural residue bio-mass date palm fibre in dry-blended polycaprolactone (PCL) bio-composites for sustainable packaging applications. Waste and Biomass Valorization, 1–13. https://doi.org/10.1007/S12649-024-02550-z
  • Satha, H., Kouadri, I., & Benachour, D. (2020). Thermal, structural and morphological studies of cellulose and cellulose nanofibers extracted from bitter watermelon of the cucurbitaceae family. Journal of Polymers and the Environment, 28(7), 1914–1920. https://doi.org/10.1007/S10924-020-01735-6
  • Selimin, M. A., Latif, A. F. A., Er, Y. C., Muhamad, M. S., Basri, H., & Lee, T. C. (2022). Adsorption efficiency of banana blossom peels (musa acuminata colla) adsorbent for chromium (VI) removal. Materials Today: Proceedings, 57, 1262–1268. https://doi.org/10.1016/j.matpr.2021.10.502
  • Shekhawat, A., Jugade, R., Gomase, V., Kahu, S., Dhandayutham, S., & Pandey, S. (2023). Adsorptive removal of As (III) by cellulose-Sn (IV) biocomposite. Journal of Composites Science, 7(1), 19. https://doi.org/10.3390/jcs7010019
  • Sherugar, P., Padaki, M., Naik, N. S., George, S. D., & Murthy, D. H. (2022). Biomass-derived versatile activated carbon removes both heavy metals and dye molecules from wastewater with near-unity efficiency: Mechanism and kinetics. Chemosphere, 287, 132085. https://doi.org/10.1016/j.chemosphere.2021.132085
  • Shrestha, P., Sadiq, M. B., & Anal, A. K. (2021). Development of antibacterial biocomposites reinforced with cellulose nanocrystals derived from banana pseudostem. Carbohydrate Polymer Technologies and Applications, 2, 100112. https://doi.org/10.1016/j.carpta.2021.100112
  • Singh, A. A., Genovese, M. E., Mancini, G., Marini, L., & Athanassiou, A. (2020). Green processing route for polylactic acid–cellulose fiber biocomposites. ACS Sustainable Chemistry and Engineering, 8(10), 4128–4136. https://doi.org/10.1021/acssuschemeng.9b06760
  • Tejada-Tovar, C., Gonzalez-Delgado, A. D., & Villabona-Ortiz, A. (2019). Characterization of residual biomasses and its application for the removal of lead ions from aqueous solution. Applied Sciences, 9(21), 4486. https://doi.org/10.3390/app9214486
  • Tejada-Tovar, C., Villabona-Ortíz, Á., & Ortega-Toro, R. (2023). Removal of metals and dyes in water using low-cost agro-industrial waste materials. Applied Sciences, 13(14), 8481. https://doi.org/10.3390/app13148481
  • Van, T. T., Gaspillo, P., Thanh, H. G. T., Nhi, N. H. T., Long, H. N., Tri, N., Van, T. T. N., Nguyen, T. T., & Huynh, K. P. H. (2022). Cellulose from the banana stem: optimization of extraction by response surface methodology (RSM) and charaterization. Heliyon, 8(12), e11845. https://doi.org/10.1016/j.heliyon.2022.e11845
  • Vatanpour, V., Dehqan, A., Paziresh, S., Zinadini, S., Zinatizadeh, A. A., & Koyuncu, I. (2022). Polylactic acid in the fabrication of separation membranes: A review. Separation and Purification Technology, 296, 121433. https://doi.org/10.1016/j.seppur.2022.121433
  • Villabona-Ortíz, Á., Ortega-Toro, R., & Pedroza-Hernández, J. (2024). Biocomposite based on polyhydroxybutyrate and cellulose acetate for the adsorption of methylene blue. Journal of Composites Science, 8(7), 234. https://doi.org/10.3390/jcs8070234
  • Wan-Ishak, W. H., Rosli, N. A., & Ahmad, I. (2020). Influence of amorphous cellulose on mechanical, thermal, and hydrolytic degradation of poly(lactic acid) biocomposites. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-68274-x
  • Wang, Q., Ji, C., Sun, J., Zhu, Q., & Liu, J. (2020). Structure and properties of polylactic acid biocomposite films reinforced with cellulose nanofibrils. Molecules, 25(14), 3306. https://doi.org/10.3390/molecules25143306
  • Yadav, N., Saini, O., Debnath, N., Singh, S., Thakur, T. K., Rajendra, K., Meena, R., Thakur, I. S., & Srivastava, S. (2024). Optimizing enhanced heavy metal detoxification by novel hybrid fungal hyphae-nano-biocomposite functionalized with graphene oxide: Unravelling process parameters & adsorption modelling. Process Safety and Environmental Protection, 188, 917–928. https://doi.org/10.1016/j.psep.2024.05.086
  • Yang, J., Li, Y., Li, X., Ji, M., Peng, S., Man, J., Zhou, L., Li, F., & Zhang, C. (2024). Starch-fiber foaming biodegradable composites with polylactic acid hydrophobic surface. International Journal of Biological Macromolecules, 267, 131406. https://doi.org/10.1016/j.ijbiomac.2024.131406
  • Zarna, C., Opedal, M. T., Echtermeyer, A. T., & Chinga-Carrasco, G. (2021). Reinforcement ability of lignocellulosic components in biocomposites and their 3D printed applications–a review. Composites Part C: Open Access, 6, 100171. https://doi.org/10.1016/j.jcomc.2021.100171
  • Zhang, Y. N., Guo, J. Z., Wu, C., Huan, W. W., Chen, L., & Li, B. (2022). Enhanced removal of Cr(VI) by cation functionalized bamboo hydrochar. Bioresource Technology, 347, 126703. https://doi.org/10.1016/j.biortech.2022.126703
  • Zhao, M. L., Wang, J. X., Bian, X. K., Zhang, J., Han, Y. W., Xu, S. X., Lee, S. C., & Zhao, J. Z. (2023). Hexavalent chromium causes centrosome amplification by inhibiting the binding between TMOD2 and NPM2. Toxicology Letters, 380, 12–22. https://doi.org/10.1016/j.toxlet.2023.03.008
  • Zheng, G., Kang, X., Ye, H., Fan, W., Sonne, C., Lam, S. S., Liew, R. K., Xia, C., Shi, Y., & Ge, S. (2024). Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 35(4), 108817. https://doi.org/10.1016/j.cclet.2023.108817