- Abu Aldam, S., Dey, M., Javaid, S., Ji, Y., & Gupta, S. (2020). On the synthesis and characterization of polylactic acid, polyhydroxyalkanoate, cellulose acetate, and their engineered blends by solvent casting. Journal of Materials Engineering and Performance, 29(9), 5542–5556. https://doi.org/10.1007/s11665-020-04594-3
- Aigbe, U. O., & Osibote, O. A. (2021). Carbon derived nanomaterials for the sorption of heavy metals from aqueous solution: A review. Environmental Nanotechnology, Monitoring & Management, 16, 100578. https://doi.org/10.1016/j.enmm.2021.100578
- Badawy, A. M., Farghali, A. A., Bonilla-Petriciolet, A., Selim, A. Q., & Seliem, M. K. (2023). Effective removal of Cr(VI) and methyl orange by nano magnetite loaded starch/muscovite biocomposite: Characterization, experiments, advanced modeling, and physicochemical parameters interpretation. International Journal of Biological Macromolecules, 224, 1052–1064. https://doi.org/10.1016/j.ijbiomac.2022.10.190
- Castro, D., Rosas-Laverde, N., Belén Aldás, M., Almeida-Naranjo, C., Guerrero, V. H., & Pruna, A. (2021). Chemical modification of agro-industrial waste-based bioadsorbents for enhanced removal of Zn (II) ions from aqueous solutions. Materials, 14(9), 2134. https://doi.org/10.3390/ma14092134
- Diaz-Rodriguez, K. F., Salazar-Pinto, B. M., Flores-Calla, S. S., & Gonzales-Condori, E. G. (2025). Potential use of artichoke (Cynara cardunculus L.) waste packed in filter bags for the removal of hexavalent chromium from water. Revista Mexicana de Ingeniería Química, 24(1), 1–21. https://doi.org/10.24275/RMIQ/ia25426
- Fijoł, N., Abdelhamid, H. N., Pillai, B., Hall, S. A., Thomas, N., & Mathew, A. P. (2021). 3D-printed monolithic biofilters based on a polylactic acid (PLA) – hydroxyapatite (HAp) composite for heavy metal removal from an aqueous medium. RSC Advances, 11(51), 32408–32418. https://doi.org/10.1039/d1ra05202k
- González-Delgado, A., Villabona-Ortíz, A., & Tejada-Tovar, C. (2022). Evaluation of three biomaterials from coconut mesocarp for use in water treatments polluted with an anionic dye. Water, 14(3), 408. https://doi.org/10.3390/w14030408
- Gupta, R. D., & Raghav, N. (2020). Nano-crystalline cellulose: Preparation, modification and usage as sustained release drug delivery excipient for some non-steroidal anti-inflammatory drugs. International Journal of Biological Macromolecules, 147, 921–930. https://doi.org/10.1016/j.ijbiomac.2019.10.057
- Hsini, A., Essekri, A., Aarab, N., Laabd, M., Ait Addi, A., Lakhmiri, R., & Albourine, A. (2020). Elaboration of novel polyaniline@Almond shell biocomposite for effective removal of hexavalent chromium ions and Orange G dye from aqueous solutions. Environmental Science and Pollution Research, 27(13), 15245–15258. https://doi.org/10.1007/s11356-020-08039-1
- Iheanacho, O. C., Nwabanne, J. T., Obi, C. C., Igwegbe, C. A., Onu, C. E., & Dahlan, I. (2023). Adsorptive dephenolization of aqueous solutions using thermally modified corn cob: mechanisms, point of zero charge, and isosteric heat studies. Adsorption Science and Technology, 2023. https://doi.org/10.1155/2023/2813663
- Ishtiaq, F., Bhatti, H. N., Khan, A., Iqbal, M., & Kausar, A. (2020). Polypyrole, polyaniline and sodium alginate biocomposites and adsorption-desorption efficiency for imidacloprid insecticide. International Journal of Biological Macromolecules, 147, 217–232. https://doi.org/10.1016/j.ijbiomac.2020.01.022
- Islam, M. A., Angove, M. J., Morton, D. W., Pramanik, B. K., & Awual, M. R. (2020). A mechanistic approach of chromium (VI) adsorption onto manganese oxides and boehmite. Journal of Environmental Chemical Engineering, 8(2), 103515. https://doi.org/10.1016/j.jece.2019.103515
- Joshi, M., Dwivedi, C., & Manjare, S. (2024). A renewable cellulose-rich biofiller material extracted from waste banana stem fibers for reinforcing natural rubber composites. Journal of Materials Science, 59(2), 519–534. https://doi.org/10.1007/s10853-023-09230-8
- Kadea, S., Kittikorn, T., & Hedthong, R. (2024). Sustainable laminate biocomposite of wood pulp/PLA with modified PVA-MFC compatibilizer: Weathering resistance and biodegradation in soil. Industrial Crops and Products, 218, 118913. https://doi.org/10.1016/j.indcrop.2024.118913
- Khan, T., Isa, M. H., Mustafa, M. R., Yeek-Chia, H., Baloo, L., Abd Manan, T. S. B., & Saeed, M. O. (2016). Cr(VI) adsorption from aqueous solution by an agricultural waste based carbon. RSC Advances, 6(61), 56365–56374. https://doi.org/10.1039/c6ra05618k
- Kumar Sarangi, P., Subudhi, S., Bhatia, L., Saha, K., Mudgil, D., Prasad Shadangi, K., Srivastava, R. K., Pattnaik, B., & Arya, R. K. (2023). Utilization of agricultural waste biomass and recycling toward circular bioeconomy. Environmental Science and Pollution Research, 30(4), 8526–8539. https://doi.org/10.1007/s11356-022-20669-1
- Labied, R., Benturki, O., Eddine Hamitouche, A. Y., & Donnot, A. (2018). Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): Kinetic, equilibrium, and thermodynamic study. Adsorption Science & Technology, 36(4), 1066–1099. https://doi.org/10.1177/0263617417750739
- Liang, S., Cai, W., Dang, C., Peng, X., Luo, Z., & Wei, X. (2023). Synthesis of sodium alginate/phosphorus tetramethylmethyl sulfate biocomposite beads with exceptional adsorption rate for Cr(VI) removal. Journal of Environmental Chemical Engineering, 11(2), 109317. https://doi.org/10.1016/j.jece.2023.109317
- Luqman., M., Vesuanathan, T. A., & Salleh, M. N. (2020). Isolation and characterization of microcrystalline cellulose extracted from banana fiber in poly(lactic acid) biocomposite produced from solvent casting technique. IOP Conference Series: Materials Science and Engineering, 957(1), 012005. https://doi.org/10.1088/1757-899x/957/1/012005
- Madenli, Ö., Akarsu, C., & Deveci, E. Ü. (2023). Effective removal of hexavalent chromium by novel modified alginate-based biocomposites: Characterization, kinetics and equilibrium studies. Ceramics International, 49(10), 16440–16450. https://doi.org/10.1016/j.ceramint.2023.02.005
- McNeill, D. C., Pal, A. K., Nath, D., Rodriguez-Uribe, A., Mohanty, A. K., Pilla, S., Gregori, S., Dick, P., & Misra, M. (2024). Upcycling of ligno-cellulosic nutshells waste biomass in biodegradable plastic-based biocomposites uses-a comprehensive review. Composites Part C: Open Access, 100478. https://doi.org/10.1016/j.jcomc.2024.100478
- Melikoğlu, A. Y., Bilek, S. E., & Cesur, S. (2019). Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace. Carbohydrate Polymers, 215, 330–337. https://doi.org/10.1016/j.carbpol.2019.03.103
- Meng, F., Wang, G., Du, X., Wang, Z., Xu, S., & Zhang, Y. (2019). Extraction and characterization of cellulose nanofibers and nanocrystals from liquefied banana pseudo-stem residue. Composites Part B: Engineering, 160, 341–347. https://doi.org/10.1016/j.compositesb.2018.08.048
- Mi, B., & Wang, Y. (2024). Performance and mechanism of porous carbons derived from biomass as adsorbent for removal of Cr(VI). Processes, 12(10), 2229. https://doi.org/10.3390/pr12102229
- Moreno-Rubio, J. G., Osornio-Rubio, N. R., Jiménez-Islas, H., Barrera-Calva, E., Ramírez-Yañez, A. Y., & Martínez-González, G. M. (2025). Characterization and efficiency of Luffa cylindrica as bioadsorbent in Cr (VI) remotion from synthetic wastewater. Revista Mexicana de Ingeniera Quimica, 24(2), 1–14. https://doi.org/10.24275/rmiq/Mat25443
- Nandiyanto, A., Oktiani, R., & Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97–118. https://doi.org/10.17509/ijost.v4i1.15806
- Nata, I., Irawan, C., Hudha, M. I., Lesti, A., Syarkani, M. H., & Naufal, A. (2024). Enhanced copper ion adsorption by rice husk and sugarcane bagasse-based magnetic nanoparticles biocomposites. ASEAN Journal of Chemical Engineering, 24(1), 79–89. https://doi.org/10.22146/ajche.12236
- Nurdin, S., Roslan, A., Abbakar, M. S. A., Khairuddin, S. A., & Sukri, H. A. M. (2015). Rock melon activated carbon (RMAC) for removal of Cd(II), Ni(II) and Cu(II) from wastewater: kinetics and adsorption equilibrium. International Journal of Chemical Engineering and Applications, 6(2), 105–110. https://doi.org/10.7763/ijcea.2015.v6.461
- Ortega, G. S., & Rodríguez, A. E. (2018). Síntesis de acetato de celulosa y rayón a partir de residuos agroindustriales del cultivo y procesamiento de piña. Revista Teinnova, 3, 22–28.
- Prasad, P. S., Gomathi, T., Sudha, P. N., Deepa, M., Rambabu, K., & Banat, F. (2022). Biosilica/Silk Fibroin/Polyurethane biocomposite for toxic heavy metals removal from aqueous streams. Environmental Technology and Innovation, 28, 102741. https://doi.org/10.1016/j.eti.2022.102741
- Rahim, M., & Mas Haris, M. R. H. (2022). Banana trunk fibers-infused acidified chitosan-based biocomposite for Cadmium(II) sorption. Journal of Natural Fibers, 19(13), 4908–4922. https://doi.org/10.1080/15440478.2020.1870636
- Righetti, M. C., Cinelli, P., Mallegni, N., Stäbler, A., & Lazzeri, A. (2019). Thermal and mechanical properties of biocomposites made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and potato pulp powder. Polymers, 11(2), 308. https://doi.org/10.3390/polym11020308
- Rodríguez, A., Ovejero, G., Sotelo, J. L., Mestanza, M., & García, J. (2010). Adsorption of dyes on carbon nanomaterials from aqueous solutions. Journal of Environmental Science and Health, Part A , 45(12), 1642–1653. https://doi.org/10.1080/10934529.2010.506137
- Saifullah, A., Chacko, N. G., Dhakal, H. N., Khan, S. H., Sarker, F., & Zhang, Z. (2024). Valorisation of agricultural residue bio-mass date palm fibre in dry-blended polycaprolactone (PCL) bio-composites for sustainable packaging applications. Waste and Biomass Valorization, 1–13. https://doi.org/10.1007/S12649-024-02550-z
- Satha, H., Kouadri, I., & Benachour, D. (2020). Thermal, structural and morphological studies of cellulose and cellulose nanofibers extracted from bitter watermelon of the cucurbitaceae family. Journal of Polymers and the Environment, 28(7), 1914–1920. https://doi.org/10.1007/S10924-020-01735-6
- Selimin, M. A., Latif, A. F. A., Er, Y. C., Muhamad, M. S., Basri, H., & Lee, T. C. (2022). Adsorption efficiency of banana blossom peels (musa acuminata colla) adsorbent for chromium (VI) removal. Materials Today: Proceedings, 57, 1262–1268. https://doi.org/10.1016/j.matpr.2021.10.502
- Shekhawat, A., Jugade, R., Gomase, V., Kahu, S., Dhandayutham, S., & Pandey, S. (2023). Adsorptive removal of As (III) by cellulose-Sn (IV) biocomposite. Journal of Composites Science, 7(1), 19. https://doi.org/10.3390/jcs7010019
- Sherugar, P., Padaki, M., Naik, N. S., George, S. D., & Murthy, D. H. (2022). Biomass-derived versatile activated carbon removes both heavy metals and dye molecules from wastewater with near-unity efficiency: Mechanism and kinetics. Chemosphere, 287, 132085. https://doi.org/10.1016/j.chemosphere.2021.132085
- Shrestha, P., Sadiq, M. B., & Anal, A. K. (2021). Development of antibacterial biocomposites reinforced with cellulose nanocrystals derived from banana pseudostem. Carbohydrate Polymer Technologies and Applications, 2, 100112. https://doi.org/10.1016/j.carpta.2021.100112
- Singh, A. A., Genovese, M. E., Mancini, G., Marini, L., & Athanassiou, A. (2020). Green processing route for polylactic acid–cellulose fiber biocomposites. ACS Sustainable Chemistry and Engineering, 8(10), 4128–4136. https://doi.org/10.1021/acssuschemeng.9b06760
- Tejada-Tovar, C., Gonzalez-Delgado, A. D., & Villabona-Ortiz, A. (2019). Characterization of residual biomasses and its application for the removal of lead ions from aqueous solution. Applied Sciences, 9(21), 4486. https://doi.org/10.3390/app9214486
- Tejada-Tovar, C., Villabona-Ortíz, Á., & Ortega-Toro, R. (2023). Removal of metals and dyes in water using low-cost agro-industrial waste materials. Applied Sciences, 13(14), 8481. https://doi.org/10.3390/app13148481
- Van, T. T., Gaspillo, P., Thanh, H. G. T., Nhi, N. H. T., Long, H. N., Tri, N., Van, T. T. N., Nguyen, T. T., & Huynh, K. P. H. (2022). Cellulose from the banana stem: optimization of extraction by response surface methodology (RSM) and charaterization. Heliyon, 8(12), e11845. https://doi.org/10.1016/j.heliyon.2022.e11845
- Vatanpour, V., Dehqan, A., Paziresh, S., Zinadini, S., Zinatizadeh, A. A., & Koyuncu, I. (2022). Polylactic acid in the fabrication of separation membranes: A review. Separation and Purification Technology, 296, 121433. https://doi.org/10.1016/j.seppur.2022.121433
- Villabona-Ortíz, Á., Ortega-Toro, R., & Pedroza-Hernández, J. (2024). Biocomposite based on polyhydroxybutyrate and cellulose acetate for the adsorption of methylene blue. Journal of Composites Science, 8(7), 234. https://doi.org/10.3390/jcs8070234
- Wan-Ishak, W. H., Rosli, N. A., & Ahmad, I. (2020). Influence of amorphous cellulose on mechanical, thermal, and hydrolytic degradation of poly(lactic acid) biocomposites. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-68274-x
- Wang, Q., Ji, C., Sun, J., Zhu, Q., & Liu, J. (2020). Structure and properties of polylactic acid biocomposite films reinforced with cellulose nanofibrils. Molecules, 25(14), 3306. https://doi.org/10.3390/molecules25143306
- Yadav, N., Saini, O., Debnath, N., Singh, S., Thakur, T. K., Rajendra, K., Meena, R., Thakur, I. S., & Srivastava, S. (2024). Optimizing enhanced heavy metal detoxification by novel hybrid fungal hyphae-nano-biocomposite functionalized with graphene oxide: Unravelling process parameters & adsorption modelling. Process Safety and Environmental Protection, 188, 917–928. https://doi.org/10.1016/j.psep.2024.05.086
- Yang, J., Li, Y., Li, X., Ji, M., Peng, S., Man, J., Zhou, L., Li, F., & Zhang, C. (2024). Starch-fiber foaming biodegradable composites with polylactic acid hydrophobic surface. International Journal of Biological Macromolecules, 267, 131406. https://doi.org/10.1016/j.ijbiomac.2024.131406
- Zarna, C., Opedal, M. T., Echtermeyer, A. T., & Chinga-Carrasco, G. (2021). Reinforcement ability of lignocellulosic components in biocomposites and their 3D printed applications–a review. Composites Part C: Open Access, 6, 100171. https://doi.org/10.1016/j.jcomc.2021.100171
- Zhang, Y. N., Guo, J. Z., Wu, C., Huan, W. W., Chen, L., & Li, B. (2022). Enhanced removal of Cr(VI) by cation functionalized bamboo hydrochar. Bioresource Technology, 347, 126703. https://doi.org/10.1016/j.biortech.2022.126703
- Zhao, M. L., Wang, J. X., Bian, X. K., Zhang, J., Han, Y. W., Xu, S. X., Lee, S. C., & Zhao, J. Z. (2023). Hexavalent chromium causes centrosome amplification by inhibiting the binding between TMOD2 and NPM2. Toxicology Letters, 380, 12–22. https://doi.org/10.1016/j.toxlet.2023.03.008
- Zheng, G., Kang, X., Ye, H., Fan, W., Sonne, C., Lam, S. S., Liew, R. K., Xia, C., Shi, Y., & Ge, S. (2024). Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 35(4), 108817. https://doi.org/10.1016/j.cclet.2023.108817
|