Vol. 24, No. 2 (2025), IA25488 https://doi.org/10.24275/rmiq/IA25488


Changes in microbial diversity and methane yield caused by overloading in systems of chicken litter, microalgae oil-free and glycerol in co-digestion


 

Authors

G. Hernández-Eugenio, T. Espinosa-Solares, C. López-Ortiz, J. C. Meneses-Reyes, T. G. Ochoa-Bernal


Abstract

The objective of this study was to observe the response of chicken litter (CL), oil-free microalgae (M), and glycerol (G) in disturbed systems with organic loading rate (OLR) in mono, and co-digestion. To elucidate the impact of the OLR on the methane yield, Volatile Fatty Acids (VFAs), and microbial communities. In this study, 3 treatments were performed CL, CL-M, CL-M-G, in different ratios 100: 0: 0 (CL), 70:30:0 (CL-M) y 67:30:3 (CL-M-G) which were based on the best substrates with the highest Biochemical Methane Potential (BMP) reported in our previous research. Our results indicated that the CL-M system had the highest methane yield (12,481.16 mL CH4 gvs added-1) and a lower production of VFAs (70,842.07 mg L-1) compared with the CL and CL-M-G systems. In addition, the microbial analysis revealed that each methanogen was more related to a system, Methanoculleus to the CL system, Methanosarcina to the CL-M system, and Methanothrix to the CL-M-G system. Although the systems were disturbed, did not inhibit the anaerobic digestion (AD). These findings have shown that disturbances acidify the environment, reduce the abundance of bacteria, and promote methane production in the hydrogenotrophic pathway.


Keywords

Disturbances; Organic loading rate; Mesophilic; Chicken litter; Microbial diversity; Methane yield.


References

  • Alharbi, R. M. (2024). Anaerobic co-digestion of cow manure and microalgae to increase biogas production: A sustainable bioenergy source. Journal of King Saud University - Science, 36(9), 103380. https://doi.org/https://doi.org/10.1016/j.jksus.2024.103380
  • Babaee, A., & Shayegan, J. (2011). Effect of organic loading rates (OLR) on production of methane from anaerobic digestion of vegetables waste. Proceedings of the world renewable energy congress, Linköping, Sweden,
  • Basak, B., Patil, S. M., Saha, S., Kurade, M. B., Ha, G.-S., Govindwar, S. P., Lee, S. S., Chang, S. W., Chung, W. J., & Jeon, B.-H. (2021). Rapid recovery of methane yield in organic overloaded-failed anaerobic digesters through bioaugmentation with acclimatized microbial consortium. Science of The Total Environment, 764, 144219. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.144219
  • Beghini, F., McIver, L. J., Blanco-Míguez, A., Dubois, L., Asnicar, F., Maharjan, S., Mailyan, A., Manghi, P., Scholz, M., Thomas, A. M., Valles-Colomer, M., Weingart, G., Zhang, Y., Zolfo, M., Huttenhower, C., Franzosa, E. A., & Segata, N. (2021). Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. eLife, 10, e65088. https://doi.org/10.7554/eLife.65088
  • Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
  • Braz, G. H. R., Fernandez-Gonzalez, N., Lema, J. M., & Carballa, M. (2019). Organic overloading affects the microbial interactions during anaerobic digestion in sewage sludge reactors. Chemosphere, 222, 323-332. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.01.124
  • Brown, J., Pirrung, M., & McCue, L. A. (2017). FQC Dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics, 33(19), 3137-3139. https://doi.org/10.1093/bioinformatics/btx373
  • Castro-Sierra, A., Espinosa-Solares, T., Houbron, E., Castro-Rivera, R., Azcárraga-Salinas, B., Pacheco-Ortíz, J., & Solís-Oba, M. (2024). Production of phytoregulators during anaerobic digestion of bovine and swine manures Producción de fitorreguladores durante las digestiones anaerobias de estiércoles bovinos y porcinos. Revista Mexicana de Ingeniería Química, 23(Bio24289). https://doi.org/doi.org/10.24275/rmiq/Bio24289
  • Cortez-Cervantes, J., Moreno-Andrade, I., Escalante, A. E., de los Cobos-Vasconcelos, D., & Carrillo-Reyes, J. (2024). Identifying reliable microbial indicators in anaerobic digestion of organic solid waste: Insights from a meta-analysis. Journal of Environmental Chemical Engineering, 12(5), 113392. https://doi.org/https://doi.org/10.1016/j.jece.2024.113392
  • Gil, A., Siles, J. A., Serrano, A., Chica, A. F., & Martín, M. A. (2019). Effect of variation in the C/[N+P] ratio on anaerobic digestion. Environmental Progress & Sustainable Energy, 38(1), 228-236. https://doi.org/https://doi.org/10.1002/ep.12922
  • Kabeyi, M. J. B., & Olanrewaju, O. A. (2022). Biogas Production and Applications in the Sustainable Energy Transition. Journal of Energy, 2022(1), 8750221. https://doi.org/https://doi.org/10.1155/2022/8750221
  • Karki, R., Chuenchart, W., Surendra, K. C., Shrestha, S., Raskin, L., Sung, S., Hashimoto, A., & Kumar Khanal, S. (2021). Anaerobic co-digestion: Current status and perspectives. Bioresource Technology, 330, 125001. https://doi.org/https://doi.org/10.1016/j.biortech.2021.125001
  • Kim, J., Baek, G., Kim, J., & Lee, C. (2019). Energy production from different organic wastes by anaerobic co-digestion: Maximizing methane yield versus maximizing synergistic effect. Renewable Energy, 136, 683-690.
  • Li, B.-Y., Xia, Z.-Y., Gou, M., Sun, Z.-Y., Huang, Y.-L., Jiao, S.-B., Dai, W.-Y., & Tang, Y.-Q. (2022). Production of volatile fatty acid from fruit waste by anaerobic digestion at high organic loading rates: Performance and microbial community characteristics. Bioresource Technology, 346, 126648. https://doi.org/https://doi.org/10.1016/j.biortech.2021.126648
  • Li, D., Luo, R., Liu, C.-M., Leung, C.-M., Ting, H.-F., Sadakane, K., Yamashita, H., & Lam, T.-W. (2016). MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods, 102, 3-11. https://doi.org/https://doi.org/10.1016/j.ymeth.2016.02.020
  • Li, R., Duan, N., Zhang, Y., Liu, Z., Li, B., Zhang, D., & Dong, T. (2017). Anaerobic co-digestion of chicken manure and microalgae Chlorella sp.: Methane potential, microbial diversity and synergistic impact evaluation. Waste Management, 68, 120-127. https://doi.org/https://doi.org/10.1016/j.wasman.2017.06.028
  • Li, R., Duan, N., Zhang, Y., Liu, Z., Li, B., Zhang, D., Lu, H., & Dong, T. (2017). Co-digestion of chicken manure and microalgae Chlorella 1067 grown in the recycled digestate: Nutrients reuse and biogas enhancement. Waste Management, 70, 247-254. https://doi.org/10.1016/j.wasman.2017.09.016
  • Lv, Y., Chang, N., Li, Y.-Y., & Liu, J. (2021). Anaerobic co-digestion of food waste with municipal solid waste leachate: A review and prospective application with more benefits. Resources, Conservation and Recycling, 174, 105832. https://doi.org/https://doi.org/10.1016/j.resconrec.2021.105832
  • Magdalena, J. A., Greses, S., & González-Fernández, C. (2019). Impact of Organic Loading Rate in Volatile Fatty Acids Production and Population Dynamics Using Microalgae Biomass as Substrate. Scientific Reports, 9(1), 18374. https://doi.org/10.1038/s41598-019-54914-4
  • Mahmudul, H. M., Akbar, D., Rasul, M. G., Narayanan, R., & Mofijur, M. (2022). Estimation of the sustainable production of gaseous biofuels, generation of electricity, and reduction of greenhouse gas emissions using food waste in anaerobic digesters. Fuel, 310, 122346. https://doi.org/https://doi.org/10.1016/j.fuel.2021.122346
  • Malet, N., Pellerin, S., Girault, R., & Nesme, T. (2023). Does anaerobic digestion really help to reduce greenhouse gas emissions? A nuanced case study based on 30 cogeneration plants in France. Journal of Cleaner Production, 384, 135578. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.135578
  • Meneses-Reyes, J. C., Hernández-Eugenio, G., Huber, D. H., Balagurusamy, N., & Espinosa-Solares, T. (2017). Biochemical methane potential of oil-extracted microalgae and glycerol in co-digestion with chicken litter. Bioresource Technology, 224, 373-379. https://doi.org/https://doi.org/10.1016/j.biortech.2016.11.012
  • Meneses-Reyes, J. C., Hernández-Eugenio, G., Huber, D. H., Balagurusamy, N., & Espinosa-Solares, T. (2018). Oil-extracted Chlorella vulgaris biomass and glycerol bioconversion to methane via continuous anaerobic co-digestion with chicken litter. Renewable Energy, 128, 223-229. https://doi.org/https://doi.org/10.1016/j.renene.2018.05.053
  • Menzel, T., Neubauer, P., & Junne, S. (2020). Role of Microbial Hydrolysis in Anaerobic Digestion. Energies, 13(21), 5555. https://www.mdpi.com/1996-1073/13/21/5555
  • Musa, M. A., Idrus, S., Hasfalina, C. M., & Daud, N. N. N. (2018). Effect of Organic Loading Rate on Anaerobic Digestion Performance of Mesophilic (UASB) Reactor Using Cattle Slaughterhouse Wastewater as Substrate. International Journal of Environmental Research and Public Health, 15(10), 2220. https://www.mdpi.com/1660-4601/15/10/2220
  • Nguyen, A. Q., Nguyen, L. N., Phan, H. V., Galway, B., Bustamante, H., & Nghiem, L. D. (2019). Effects of operational disturbance and subsequent recovery process on microbial community during a pilot-scale anaerobic co-digestion. International Biodeterioration & Biodegradation, 138, 70-77. https://doi.org/https://doi.org/10.1016/j.ibiod.2019.01.002
  • Nkuna, R., Roopnarain, A., Rashama, C., & Adeleke, R. (2022). Insights into organic loading rates of anaerobic digestion for biogas production: a review. Critical Reviews in Biotechnology, 42(4), 487-507. https://doi.org/10.1080/07388551.2021.1942778
  • Oduor, W. W., Wandera, S. M., Murunga, S. I., & Raude, J. M. (2022). Enhancement of anaerobic digestion by co-digesting food waste and water hyacinth in improving treatment of organic waste and bio-methane recovery. Heliyon, 8(9). https://doi.org/10.1016/j.heliyon.2022.e10580
  • Pan, S.-Y., Tsai, C.-Y., Liu, C.-W., Wang, S.-W., Kim, H., & Fan, C. (2021). Anaerobic co-digestion of agricultural wastes toward circular bioeconomy. iScience, 24(7), 102704. https://doi.org/https://doi.org/10.1016/j.isci.2021.102704
  • Pei, Z., Liu, S., Jing, Z., Zhang, Y., Wang, J., Liu, J., Wang, Y., Guo, W., Li, Y., Feng, L., Zhou, H., Li, G., Han, Y., Liu, D., & Pan, J. (2022). Understanding of the interrelationship between methane production and microorganisms in high-solid anaerobic co-digestion using microbial analysis and machine learning. Journal of Cleaner Production, 373, 133848. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.133848
  • Rahman, M. S., Hoque, M. N., Puspo, J. A., Islam, M. R., Das, N., Siddique, M. A., Hossain, M. A., & Sultana, M. (2021). Microbiome signature and diversity regulates the level of energy production under anaerobic condition. Scientific Reports, 11(1), 19777.
  • Rétfalvi, T., Szabó, P., Hájos, A.-T., Albert, L., Kovács, A., Milics, G., Neményi, M., Lakatos, E., & Ördög, V. (2016). Effect of co-substrate feeding on methane yield of anaerobic digestion of Chlorella vulgaris. Journal of Applied Phycology, 28(5), 2741-2752. https://doi.org/10.1007/s10811-016-0796-5
  • Rivera-Hernández, Y., Hernández-Eugenio, G., Balagurusamy, N., & Espinosa-Solares, T. (2022). Sargassum-pig manure co-digestion: An alternative for bioenergy production and treating a polluting coastal waste. Renewable Energy, 199, 1336-1344. https://doi.org/https://doi.org/10.1016/j.renene.2022.09.068
  • Sanaye, S., Mohammadi, M. H., Yazdani, M., & Barati Rashvanlou, R. (2022). Bio-gas augmentation and waste minimization by co-digestion process in anaerobic digestion system of a municipal waste water treatment plant. Energy Conversion and Management, 268, 115989. https://doi.org/https://doi.org/10.1016/j.enconman.2022.115989
  • Serna-García, R., Zamorano-López, N., Seco, A., & Bouzas, A. (2020). Co-digestion of harvested microalgae and primary sludge in a mesophilic anaerobic membrane bioreactor (AnMBR): Methane potential and microbial diversity. Bioresource Technology, 298, 122521.
  • Serrano-Meza, A., Garzón-Zúñiga, M., Barragán-Huerta, B., Estrada-Arriaga, E., Almaraz-Abarca, N., & García-Olivares, J. (2020). Anaerobic digestion inhibition indicators and control strategies in processes treating industrial wastewater and wastes. Revista Mexicana de Ingeniería Química, 19(Sup. 1), 29-44.
  • Slezak, R., Grzelak, J., Krzystek, L., & Ledakowicz, S. (2017). The effect of initial organic load of the kitchen waste on the production of VFA and H2 in dark fermentation. Waste Management, 68, 610-617.
  • Solé-Bundó, M., Passos, F., Romero-Güiza, M. S., Ferrer, I., & Astals, S. (2019). Co-digestion strategies to enhance microalgae anaerobic digestion: A review. Renewable and Sustainable Energy Reviews, 112, 471-482. https://doi.org/https://doi.org/10.1016/j.rser.2019.05.036
  • Spirito, C. M., Daly, S. E., Werner, J. J., & Angenent, L. T. (2018). Redundancy in Anaerobic Digestion Microbiomes during Disturbances by the Antibiotic Monensin. Applied and Environmental Microbiology, 84(9), e02692-02617. https://doi.org/doi:10.1128/AEM.02692-17
  • Vivekanand, V., Mulat, D. G., Eijsink, V. G. H., & Horn, S. J. (2018). Synergistic effects of anaerobic co-digestion of whey, manure and fish ensilage. Bioresource Technology, 249, 35-41. https://doi.org/https://doi.org/10.1016/j.biortech.2017.09.169
  • Wei, Y., Yuan, H., Wachemo, A. C., & Li, X. (2019). Impacts of modification of corn stover on the synergistic effect and microbial community structure of co-digestion with chicken manure. Energy & Fuels, 34(1), 401-411.
  • Wijekoon, K. C., Visvanathan, C., & Abeynayaka, A. (2011). Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresource Technology, 102(9), 5353-5360.
  • Wirth, R., Böjti, T., Lakatos, G., Maróti, G., Bagi, Z., Rákhely, G., & Kovács, K. L. (2019). Characterization of Core Microbiomes and Functional Profiles of Mesophilic Anaerobic Digesters Fed With Chlorella vulgaris Green Microalgae and Maize Silage [Original Research]. Frontiers in Energy Research, 7. https://doi.org/10.3389/fenrg.2019.00111
  • Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 257. https://doi.org/10.1186/s13059-019-1891-0
  • Wu, D., Peng, X., Li, L., Yang, P., Peng, Y., Liu, H., & Wang, X. (2021). Commercial biogas plants: Review on operational parameters and guide for performance optimization. Fuel, 303, 121282. https://doi.org/https://doi.org/10.1016/j.fuel.2021.121282
  • Zhang, Y., Caldwell, G. S., Blythe, P. T., Zealand, A. M., Li, S., Edwards, S., Xing, J., Goodman, P., Whitworth, P., & Sallis, P. J. (2020). Co-digestion of microalgae with potato processing waste and glycerol: effect of glycerol addition on methane production and the microbial community. RSC advances, 10(61), 37391-37408.
  • Zhu, S., Qin, L., Feng, P., Shang, C., Wang, Z., & Yuan, Z. (2019). Treatment of low C/N ratio wastewater and biomass production using co-culture of Chlorella vulgaris and activated sludge in a batch photobioreactor. Bioresource Technology, 274, 313-320. https://doi.org/https://doi.org/10.1016/j.biortech.2018.10.034