- Alharbi, R. M. (2024). Anaerobic co-digestion of cow manure and microalgae to increase biogas production: A sustainable bioenergy source. Journal of King Saud University - Science, 36(9), 103380. https://doi.org/https://doi.org/10.1016/j.jksus.2024.103380
- Babaee, A., & Shayegan, J. (2011). Effect of organic loading rates (OLR) on production of methane from anaerobic digestion of vegetables waste. Proceedings of the world renewable energy congress, Linköping, Sweden,
- Basak, B., Patil, S. M., Saha, S., Kurade, M. B., Ha, G.-S., Govindwar, S. P., Lee, S. S., Chang, S. W., Chung, W. J., & Jeon, B.-H. (2021). Rapid recovery of methane yield in organic overloaded-failed anaerobic digesters through bioaugmentation with acclimatized microbial consortium. Science of The Total Environment, 764, 144219. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.144219
- Beghini, F., McIver, L. J., Blanco-Míguez, A., Dubois, L., Asnicar, F., Maharjan, S., Mailyan, A., Manghi, P., Scholz, M., Thomas, A. M., Valles-Colomer, M., Weingart, G., Zhang, Y., Zolfo, M., Huttenhower, C., Franzosa, E. A., & Segata, N. (2021). Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. eLife, 10, e65088. https://doi.org/10.7554/eLife.65088
- Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
- Braz, G. H. R., Fernandez-Gonzalez, N., Lema, J. M., & Carballa, M. (2019). Organic overloading affects the microbial interactions during anaerobic digestion in sewage sludge reactors. Chemosphere, 222, 323-332. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.01.124
- Brown, J., Pirrung, M., & McCue, L. A. (2017). FQC Dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics, 33(19), 3137-3139. https://doi.org/10.1093/bioinformatics/btx373
- Castro-Sierra, A., Espinosa-Solares, T., Houbron, E., Castro-Rivera, R., Azcárraga-Salinas, B., Pacheco-Ortíz, J., & Solís-Oba, M. (2024). Production of phytoregulators during anaerobic digestion of bovine and swine manures Producción de fitorreguladores durante las digestiones anaerobias de estiércoles bovinos y porcinos. Revista Mexicana de Ingeniería Química, 23(Bio24289). https://doi.org/doi.org/10.24275/rmiq/Bio24289
- Cortez-Cervantes, J., Moreno-Andrade, I., Escalante, A. E., de los Cobos-Vasconcelos, D., & Carrillo-Reyes, J. (2024). Identifying reliable microbial indicators in anaerobic digestion of organic solid waste: Insights from a meta-analysis. Journal of Environmental Chemical Engineering, 12(5), 113392. https://doi.org/https://doi.org/10.1016/j.jece.2024.113392
- Gil, A., Siles, J. A., Serrano, A., Chica, A. F., & Martín, M. A. (2019). Effect of variation in the C/[N+P] ratio on anaerobic digestion. Environmental Progress & Sustainable Energy, 38(1), 228-236. https://doi.org/https://doi.org/10.1002/ep.12922
- Kabeyi, M. J. B., & Olanrewaju, O. A. (2022). Biogas Production and Applications in the Sustainable Energy Transition. Journal of Energy, 2022(1), 8750221. https://doi.org/https://doi.org/10.1155/2022/8750221
- Karki, R., Chuenchart, W., Surendra, K. C., Shrestha, S., Raskin, L., Sung, S., Hashimoto, A., & Kumar Khanal, S. (2021). Anaerobic co-digestion: Current status and perspectives. Bioresource Technology, 330, 125001. https://doi.org/https://doi.org/10.1016/j.biortech.2021.125001
- Kim, J., Baek, G., Kim, J., & Lee, C. (2019). Energy production from different organic wastes by anaerobic co-digestion: Maximizing methane yield versus maximizing synergistic effect. Renewable Energy, 136, 683-690.
- Li, B.-Y., Xia, Z.-Y., Gou, M., Sun, Z.-Y., Huang, Y.-L., Jiao, S.-B., Dai, W.-Y., & Tang, Y.-Q. (2022). Production of volatile fatty acid from fruit waste by anaerobic digestion at high organic loading rates: Performance and microbial community characteristics. Bioresource Technology, 346, 126648. https://doi.org/https://doi.org/10.1016/j.biortech.2021.126648
- Li, D., Luo, R., Liu, C.-M., Leung, C.-M., Ting, H.-F., Sadakane, K., Yamashita, H., & Lam, T.-W. (2016). MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods, 102, 3-11. https://doi.org/https://doi.org/10.1016/j.ymeth.2016.02.020
- Li, R., Duan, N., Zhang, Y., Liu, Z., Li, B., Zhang, D., & Dong, T. (2017). Anaerobic co-digestion of chicken manure and microalgae Chlorella sp.: Methane potential, microbial diversity and synergistic impact evaluation. Waste Management, 68, 120-127. https://doi.org/https://doi.org/10.1016/j.wasman.2017.06.028
- Li, R., Duan, N., Zhang, Y., Liu, Z., Li, B., Zhang, D., Lu, H., & Dong, T. (2017). Co-digestion of chicken manure and microalgae Chlorella 1067 grown in the recycled digestate: Nutrients reuse and biogas enhancement. Waste Management, 70, 247-254. https://doi.org/10.1016/j.wasman.2017.09.016
- Lv, Y., Chang, N., Li, Y.-Y., & Liu, J. (2021). Anaerobic co-digestion of food waste with municipal solid waste leachate: A review and prospective application with more benefits. Resources, Conservation and Recycling, 174, 105832. https://doi.org/https://doi.org/10.1016/j.resconrec.2021.105832
- Magdalena, J. A., Greses, S., & González-Fernández, C. (2019). Impact of Organic Loading Rate in Volatile Fatty Acids Production and Population Dynamics Using Microalgae Biomass as Substrate. Scientific Reports, 9(1), 18374. https://doi.org/10.1038/s41598-019-54914-4
- Mahmudul, H. M., Akbar, D., Rasul, M. G., Narayanan, R., & Mofijur, M. (2022). Estimation of the sustainable production of gaseous biofuels, generation of electricity, and reduction of greenhouse gas emissions using food waste in anaerobic digesters. Fuel, 310, 122346. https://doi.org/https://doi.org/10.1016/j.fuel.2021.122346
- Malet, N., Pellerin, S., Girault, R., & Nesme, T. (2023). Does anaerobic digestion really help to reduce greenhouse gas emissions? A nuanced case study based on 30 cogeneration plants in France. Journal of Cleaner Production, 384, 135578. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.135578
- Meneses-Reyes, J. C., Hernández-Eugenio, G., Huber, D. H., Balagurusamy, N., & Espinosa-Solares, T. (2017). Biochemical methane potential of oil-extracted microalgae and glycerol in co-digestion with chicken litter. Bioresource Technology, 224, 373-379. https://doi.org/https://doi.org/10.1016/j.biortech.2016.11.012
- Meneses-Reyes, J. C., Hernández-Eugenio, G., Huber, D. H., Balagurusamy, N., & Espinosa-Solares, T. (2018). Oil-extracted Chlorella vulgaris biomass and glycerol bioconversion to methane via continuous anaerobic co-digestion with chicken litter. Renewable Energy, 128, 223-229. https://doi.org/https://doi.org/10.1016/j.renene.2018.05.053
- Menzel, T., Neubauer, P., & Junne, S. (2020). Role of Microbial Hydrolysis in Anaerobic Digestion. Energies, 13(21), 5555. https://www.mdpi.com/1996-1073/13/21/5555
- Musa, M. A., Idrus, S., Hasfalina, C. M., & Daud, N. N. N. (2018). Effect of Organic Loading Rate on Anaerobic Digestion Performance of Mesophilic (UASB) Reactor Using Cattle Slaughterhouse Wastewater as Substrate. International Journal of Environmental Research and Public Health, 15(10), 2220. https://www.mdpi.com/1660-4601/15/10/2220
- Nguyen, A. Q., Nguyen, L. N., Phan, H. V., Galway, B., Bustamante, H., & Nghiem, L. D. (2019). Effects of operational disturbance and subsequent recovery process on microbial community during a pilot-scale anaerobic co-digestion. International Biodeterioration & Biodegradation, 138, 70-77. https://doi.org/https://doi.org/10.1016/j.ibiod.2019.01.002
- Nkuna, R., Roopnarain, A., Rashama, C., & Adeleke, R. (2022). Insights into organic loading rates of anaerobic digestion for biogas production: a review. Critical Reviews in Biotechnology, 42(4), 487-507. https://doi.org/10.1080/07388551.2021.1942778
- Oduor, W. W., Wandera, S. M., Murunga, S. I., & Raude, J. M. (2022). Enhancement of anaerobic digestion by co-digesting food waste and water hyacinth in improving treatment of organic waste and bio-methane recovery. Heliyon, 8(9). https://doi.org/10.1016/j.heliyon.2022.e10580
- Pan, S.-Y., Tsai, C.-Y., Liu, C.-W., Wang, S.-W., Kim, H., & Fan, C. (2021). Anaerobic co-digestion of agricultural wastes toward circular bioeconomy. iScience, 24(7), 102704. https://doi.org/https://doi.org/10.1016/j.isci.2021.102704
- Pei, Z., Liu, S., Jing, Z., Zhang, Y., Wang, J., Liu, J., Wang, Y., Guo, W., Li, Y., Feng, L., Zhou, H., Li, G., Han, Y., Liu, D., & Pan, J. (2022). Understanding of the interrelationship between methane production and microorganisms in high-solid anaerobic co-digestion using microbial analysis and machine learning. Journal of Cleaner Production, 373, 133848. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.133848
- Rahman, M. S., Hoque, M. N., Puspo, J. A., Islam, M. R., Das, N., Siddique, M. A., Hossain, M. A., & Sultana, M. (2021). Microbiome signature and diversity regulates the level of energy production under anaerobic condition. Scientific Reports, 11(1), 19777.
- Rétfalvi, T., Szabó, P., Hájos, A.-T., Albert, L., Kovács, A., Milics, G., Neményi, M., Lakatos, E., & Ördög, V. (2016). Effect of co-substrate feeding on methane yield of anaerobic digestion of Chlorella vulgaris. Journal of Applied Phycology, 28(5), 2741-2752. https://doi.org/10.1007/s10811-016-0796-5
- Rivera-Hernández, Y., Hernández-Eugenio, G., Balagurusamy, N., & Espinosa-Solares, T. (2022). Sargassum-pig manure co-digestion: An alternative for bioenergy production and treating a polluting coastal waste. Renewable Energy, 199, 1336-1344. https://doi.org/https://doi.org/10.1016/j.renene.2022.09.068
- Sanaye, S., Mohammadi, M. H., Yazdani, M., & Barati Rashvanlou, R. (2022). Bio-gas augmentation and waste minimization by co-digestion process in anaerobic digestion system of a municipal waste water treatment plant. Energy Conversion and Management, 268, 115989. https://doi.org/https://doi.org/10.1016/j.enconman.2022.115989
- Serna-García, R., Zamorano-López, N., Seco, A., & Bouzas, A. (2020). Co-digestion of harvested microalgae and primary sludge in a mesophilic anaerobic membrane bioreactor (AnMBR): Methane potential and microbial diversity. Bioresource Technology, 298, 122521.
- Serrano-Meza, A., Garzón-Zúñiga, M., Barragán-Huerta, B., Estrada-Arriaga, E., Almaraz-Abarca, N., & García-Olivares, J. (2020). Anaerobic digestion inhibition indicators and control strategies in processes treating industrial wastewater and wastes. Revista Mexicana de Ingeniería Química, 19(Sup. 1), 29-44.
- Slezak, R., Grzelak, J., Krzystek, L., & Ledakowicz, S. (2017). The effect of initial organic load of the kitchen waste on the production of VFA and H2 in dark fermentation. Waste Management, 68, 610-617.
- Solé-Bundó, M., Passos, F., Romero-Güiza, M. S., Ferrer, I., & Astals, S. (2019). Co-digestion strategies to enhance microalgae anaerobic digestion: A review. Renewable and Sustainable Energy Reviews, 112, 471-482. https://doi.org/https://doi.org/10.1016/j.rser.2019.05.036
- Spirito, C. M., Daly, S. E., Werner, J. J., & Angenent, L. T. (2018). Redundancy in Anaerobic Digestion Microbiomes during Disturbances by the Antibiotic Monensin. Applied and Environmental Microbiology, 84(9), e02692-02617. https://doi.org/doi:10.1128/AEM.02692-17
- Vivekanand, V., Mulat, D. G., Eijsink, V. G. H., & Horn, S. J. (2018). Synergistic effects of anaerobic co-digestion of whey, manure and fish ensilage. Bioresource Technology, 249, 35-41. https://doi.org/https://doi.org/10.1016/j.biortech.2017.09.169
- Wei, Y., Yuan, H., Wachemo, A. C., & Li, X. (2019). Impacts of modification of corn stover on the synergistic effect and microbial community structure of co-digestion with chicken manure. Energy & Fuels, 34(1), 401-411.
- Wijekoon, K. C., Visvanathan, C., & Abeynayaka, A. (2011). Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresource Technology, 102(9), 5353-5360.
- Wirth, R., Böjti, T., Lakatos, G., Maróti, G., Bagi, Z., Rákhely, G., & Kovács, K. L. (2019). Characterization of Core Microbiomes and Functional Profiles of Mesophilic Anaerobic Digesters Fed With Chlorella vulgaris Green Microalgae and Maize Silage [Original Research]. Frontiers in Energy Research, 7. https://doi.org/10.3389/fenrg.2019.00111
- Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 257. https://doi.org/10.1186/s13059-019-1891-0
- Wu, D., Peng, X., Li, L., Yang, P., Peng, Y., Liu, H., & Wang, X. (2021). Commercial biogas plants: Review on operational parameters and guide for performance optimization. Fuel, 303, 121282. https://doi.org/https://doi.org/10.1016/j.fuel.2021.121282
- Zhang, Y., Caldwell, G. S., Blythe, P. T., Zealand, A. M., Li, S., Edwards, S., Xing, J., Goodman, P., Whitworth, P., & Sallis, P. J. (2020). Co-digestion of microalgae with potato processing waste and glycerol: effect of glycerol addition on methane production and the microbial community. RSC advances, 10(61), 37391-37408.
- Zhu, S., Qin, L., Feng, P., Shang, C., Wang, Z., & Yuan, Z. (2019). Treatment of low C/N ratio wastewater and biomass production using co-culture of Chlorella vulgaris and activated sludge in a batch photobioreactor. Bioresource Technology, 274, 313-320. https://doi.org/https://doi.org/10.1016/j.biortech.2018.10.034
|