Vol. 24, No. 2 (2025), IA25491 https://doi.org/10.24275/rmiq/IA25491


Removal of fluoride ions from aqueous solutions and water for human consumption by a surfactant modified zeolite


 

Authors

N. Flores-Alamo, J.I. Vázquez-Méndez, M.J. Solache-Ríos, F. Cuellar-Robles, M.C. Carreño-de-León


Abstract

Fluoride ions are found in groundwater due to the presence of some minerals like fluorite (CaF2) and fluorapatite (Ca5(PO4)3F). A clinoptilolite type zeolite was modified with hexadecyltrimethylammonium bromide in order to determine its adsorption properties for the removal of fluoride ions from water, the material was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and the point of zero charge was determined. Sorption experiments were performed by using a solution of sodium fluoride and water from the state of Zacatecas, México. The kinetic data were adequately fitted to the pseudo first-order model, and the isotherms data to the Freundlich model, suggesting that the sorption process is carried out by physisorption on a heterogeneous material, the adsorption was similar between 20 and 50°C and the highest adsorption was between pH 4 and 6. Experiments carried out with water from the state of Zacatecas showed a removal of 86.3 % with 130 mg of modified zeolite and 10 mL of water. The results show that this material is an alternative for removing fluoride ions from water.


Keywords

fluoride ions, adsorption, zeolite, pollution.


References

  • Ahamad, K., Singh, R., Baruah, I., Choudhury, H. and Sharma, M. (2018). Equilibrium and kinetics modeling of fluoride adsorption onto activated alumina, alum and brick powder. Groundwater for Sustainable Development, 7, 452–458. https://doi.org/10.1016/J.GSD.2018.06.005
  • Alarcón-Herrera, M, Martin-Alarcon, D., Gutiérrez, M., Reynoso-Cuevas, L., Martín-Domínguez, A., Olmos-Márquez, M. and Bundschuh, J. (2020). Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization. Science of The Total Environment, 698, 134168. https://doi.org/10.1016/J.SCITOTENV.2019.134168
  • Alhassan, S., He, Y., Huang, L., Wu, B., Yan, L., Deng, H. and Wang, H. (2020). A review on fluoride adsorption using modified bauxite: Surface modification and sorption mechanisms perspectives. Journal of Environmental Chemical Engineering, 8(6), 104532. https://doi.org/10.1016/J.JECE.2020.104532
  • Bajda, T. and Kłapyta, Z. (2013). Adsorption of chromate from aqueous solutions by HDTMA-modified clinoptilolite, glauconite and montmorillonite. Applied Clay Science, 86, 169-173.
  • Barczyk, K., Mozgawa, W. and Król, M. (2014). Studies of anions sorption on natural zeolites. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133, 876–882. https://doi.org/10.1016/J.SAA.2014.06.065
  • Bhatnagar, A., Kumar, E. and Sillanpää, M. (2011). Fluoride removal from water by adsorption—A review. Chemical Engineering Journal, 171(3), 811–840. https://doi.org/10.1016/J.CEJ.2011.05.028
  • Chai, J., Zhang, W., Liu, D., Li, S., Chen, X., Yang, Y. and Zhang, D. (2022). Decreased levels and ecological risks of disinfection by-product chloroform in a field-scale artificial groundwater recharge project by colloid supplement. Environment International, 161, 107130. https://doi.org/10.1016/J.ENVINT.2022.107130
  • Chen, C., Shih, Y., Su, J., Chen, K. and Huang, C. (2022). Mesoporous zirconium pyrophosphate for the adsorption of fluoride from dilute aqueous solutions. Chemical Engineering Journal, 427, 132034. https://doi.org/10.1016/J.CEJ.2021.132034
  • Corral-Capulin, N., Vilchis-Nestor, A., Gutiérrez-Segura, E. and Solache-Ríos, M. (2018). The influence of chemical and thermal treatments on the fluoride removal from water by three mineral structures and their characterization. Journal of Fluorine Chemistry, 213, 42–50. https://doi.org/10.1016/J.JFLUCHEM.2018.07.002
  • Dávila-Estrada, M., Ramírez-García, J. J., Díaz-Nava, M. C., and Solache-Ríos, M. (2016). Sorption of 17α-ethinylestradiol by surfactant-modified zeolite-rich tuff from aqueous solutions. Water, Air, & Soil Pollution227, 1-10. https://doi.org/10.1007/s11270-016-2850-y
  • Dimas Rivera, G., Martínez Hernández, A., Pérez Cabello, A., Rivas Barragán, E., Liñán Montes, A., Flores Escamilla, G., Sandoval Rangel, L., Suarez Vazquez, S. and de Haro Del Río, D. (2021). Removal of chromate anions and immobilization using surfactant-modified zeolites. Journal of Water Process Engineering, 39, 101717. https://doi.org/10.1016/J.JWPE.2020.101717
  • Flores-Alamo, N., Solache-Ríos, M. J., Gómez-Espinosa, R.M. and García-Gaitán, B. (2015). Estudio de adsorción competitiva de cobre y zinc en solución acuosa utilizando Q/PVA/EGDE. Revista Mexicana de Ingeniería Química, 14(3), 801-811. http://www.rmiq.org/ojs311/index.php/rmiq/article/view/995
  • He, J., Yang, Y., Wu, Z., Xie, C., Zhang, K., Kong, L. and Liu, J. (2020). Review of fluoride removal from water environment by adsorption. Journal of Environmental Chemical Engineering, 8(6), 104516.  https://doi.org/10.1016/J.JECE.2020.104516
  • Hosseinifard, S., Aroon, M. and Dahrazma, B. (2020). Application of PVDF/HDTMA-modified clinoptilolite nanocomposite membranes in removal of reactive dye from aqueous solution. Separation and Purification Technology, 251, 117294. https://doi.org/10.1016/J.SEPPUR.2020.117294
  • Jiang, P., Li, G., Zhou, X., Wang, C., Qiao, Y., Liao, D. and Shi, D. (2019). Chronic fluoride exposure induces neuronal apoptosis and impairs neurogenesis and synaptic plasticity: Role of GSK-3β/β-catenin pathway. Chemosphere, 214, 430–435. https://doi.org/10.1016/J.CHEMOSPHERE.2018.09.095
  • Kabuba, J. and Banza, M. (2020). Ion-exchange process for the removal of Ni (II) and Co (II) from wastewater using modified clinoptilolite: Modeling by response surface methodology and artificial neural network. Results in Engineering, 8, 100189. https://doi.org/10.1016/J.RINENG.2020.100189
  • Liu M., Zang, Z., Zhang, S., Ouyang, G. and Han, R. (2021). Enhanced fluoride adsorption from aqueous solution by zirconium (IV)-impregnated magnetic chitosan graphene oxide. International Journal of Biological Macromolecules, 182, 1759–1768. https://doi.org/10.1016/J.IJBIOMAC.2021.05.116
  • Leal-Perez, J. E., Almaral-Sanchez, J. L., Hurtado-Macias, A., Cortez-Valadez, M., Bórquez-Mendívil, A., García-Grajeda, B. A. and Flores-Valenzuela, J. (2024). Structural and chemical analysis of Zn ion exchange in thermally modified zeolite A4. Revista Mexicana de Ingeniera Química23(3).  https://doi.org/10.24275/rmiq/Mat24264
  • López-Guzmán, M., Alarcón-Herrera, M., Irigoyen-Campuzano, J., Torres-Castañón, L. and Reynoso-Cuevas, L. (2019). Simultaneous removal of fluoride and arsenic from well water by electrocoagulation. Science of The Total Environment, 678, 181–187. https://doi.org/10.1016/J.SCITOTENV.2019.04.400
  • Martínez-Salazar, E., Flores-Rodríguez, V., Rosas-Valdez, R. and Falcón-Ordaz, J. (2016). Helminth parasites of some rodents (Cricetidae, Heteromyidae, and Sciuridae) from Zacatecas, Mexico. Revista Mexicana de Biodiversidad, 87(4), 1203–1211. https://doi.org/10.1016/J.RMB.2016.10.009
  • Mohapatra, M., Anand, S., Mishra, B., Giles, D, and Singh, P. (2009). Review of fluoride removal from drinking water. Journal of Environmental Management, 91(1), 67–77.
  •           https://doi.org/10.1016/J.JENVMAN.2009.08.015
  • Nabbou, N., Belhachemi, M., Boumelik, M., Merzougui, T., Lahcene, D., Harek, Y., Zorpas, A. and Jeguirim, M. (2019). Removal of fluoride from groundwater using natural clay (kaolinite): Optimization of adsorption conditions. Comptes Rendus Chimie, 22(2–3), 105–112. https://doi.org/10.1016/J.CRCI.2018.09.010
  • Naghash, A. and Nezamzadeh-Ejhieh, A. (2015). Comparison of the efficiency of modified clinoptilolite with HDTMA and HDP surfactants for the removal of phosphate in aqueous solutions. Journal of Industrial and Engineering Chemistry, 31, 185–191. https://doi.org/10.1016/J.JIEC.2015.06.022
  • Navarro, O., González, J., Júnez-Ferreira, H., Bautista, C. and Cardona, A. (2017). Correlation of Arsenic and Fluoride in the Groundwater for Human Consumption in a Semiarid Region of Mexico. Procedia Engineering, 186, 333–340. https://doi.org/10.1016/J.PROENG.2017.03.259
  • Nezamzadeh-Ejhieh, A. and Tavakoli-Ghinani, S. (2014). Effect of a nano-sized natural clinoptilolite modified by the hexadecyltrimethyl ammonium surfactant on cephalexin drug delivery. Comptes Rendus Chimie, 17(1), 49–61. https://doi.org/10.1016/J.CRCI.2013.07.009
  • Nizam, S., Virk, H. S. and Sen, I. (2022). High levels of fluoride in groundwater from Northern parts of Indo-Gangetic plains reveals detrimental fluorosis health risks. Environmental Advances, 8, 100200. https://doi.org/10.1016/J.ENVADV.2022.100200
  • Jiménez-Reyes, M., Almazán-Sánchez, P., and Solache-Ríos M. (2021). Radioactive waste treatments by using zeolites. A short review. Journal of Environmental Radioactivity. 233, 106610. https://doi.org/10.1016/j.jenvrad.2021.106610
  • Onyango, M., Masukume, M., Ochieng, A. and Otieno, F. (2010). Functionalised natural zeolite and its potential for treating drinking water containing excess amount of nitrate. Water Research Commission, 36, 655–662. https://doi.org/10.4314/wsa.v36i5.61999
  • Saadat, M., and Nezamzadeh-Ejhieh, A. (2016). Clinoptilolite nanoparticles containing HDTMA and Arsenazo III as a sensitive carbon paste electrode modifier for indirect voltammetric measurement of Cesium ions. Electrochimica Acta, 217, 163–170. https://doi.org/10.1016/J.ELECTACTA.2016.09.084
  • Saucedo-Delgado, B., Haro, D., González-Rodríguez, L., Reynel-Ávila, H., Mendoza-Castillo, D., Bonilla-Petriciolet, A. and Rivera de la Rosa, J. (2017). Fluoride adsorption from aqueous solution using a protonated clinoptilolite and its modeling with artificial neural network-based model. Journal of Fluorine Chemistry, 204, 98–106. https://doi.org/10.1016/J.JFLUCHEM.2017.11.002
  • Serrano-Meza, A., Vigueras-Cortes, J. M., and Allen, C. D. (2024). Municipal wastewater treatment in a hybrid biofiltration system packed with agave fiber. Revista Mexicana de Ingeniera Quimica23(3). https://doi.org/10.24275/rmiq/Mat24264
  • Solińska, A. and Bajda, T. (2022). Modified zeolite as a sorbent for removal of contaminants from wet flue gas desulphurization wastewater. Chemosphere, 286. https://doi.org/10.1016/J.CHEMOSPHERE.2021.131772
  • Telkapalliwar, N. and Shivankar, V. (2019). Data of characterization and adsorption of fluoride from aqueous solution by using modified Azadirachta indica bark. Data in Brief, 26. https://doi.org/10.1016/J.DIB.2019.104509
  • Ullah, R., Liu, C., Panezai, H., Gul, A., Sun, J. and Wu, X. (2020). Controlled crystal phase and particle size of loaded-TiO2 using clinoptilolite as support via hydrothermal method for degradation of crystal violet dye in aqueous solution. Arabian Journal of Chemistry, 13(2), 4092–4101. https://doi.org/10.1016/J.ARABJC.2019.06.011
  • Wingenfelder, U., Furrer, G. and Schulin, R. (2006). Sorption of antimonate by HDTMA-modified zeolite. Microporous and Mesoporous Materials, 95, 265–271.
  • https://doi.org/10.1016/J.MICROMESO.2006.06.001
  • Zeng, Y., Woo, H., Lee, G. and Park, J. (2010). Removal of chromate from water using surfactant modified Pohang clinoptilolite and Haruna chabazite. Desalination, 257, 102–109. https://doi.org/10.1016/J.DESAL.2010.02.039
  • Zhang, X., Qi, Y., Chen, Z., Song, N., Li, X., Ren, D., & Zhang, S. (2021). Evaluation of fluoride and cadmium adsorption modification of corn stalk by aluminum trichloride. Applied Surface Science543, 148727. https://doi.org/10.1016/j.apsusc.2020.148727
  • Zhang, Y. and Jia, Y. (2018). Fluoride adsorption on manganese carbonate: Ion-exchange based on the surface carbonate-like groups and hydroxyl groups. Journal of Colloid and Interface Science, 510, 407–417. https://doi.org/10.1016/J.JCIS.2017.09.090
  • Znak, Z., Zin, O., Mashtaler, A., Korniy, S., Sukhatskiy, Y., Gogate, P. R., Mnykh, R. and Thanekar, P. (2021). Improved modification of clinoptilolite with silver using ultrasonic radiation. Ultrasonics Sonochemistry, 73, 105496. https://doi.org/10.1016/J.ULTSONCH.2021.105496